泊松尺寸偏倚林德利分布及其应用

S. Dar, Anwar Hassan, P. B. Ahmad
{"title":"泊松尺寸偏倚林德利分布及其应用","authors":"S. Dar, Anwar Hassan, P. B. Ahmad","doi":"10.1142/s1793962322500313","DOIUrl":null,"url":null,"abstract":"In this paper, a new model for count data is introduced by compounding the Poisson distribution with size-biased three-parameter Lindley distribution. Statistical properties, such as reliability, hazard rate, reverse hazard rate, Mills ratio, moments, shewness, kurtosis, moment genrating function, probability generating function and order statistics, have been discussed. Moreover, the collective risk model is discussed by considering the proposed distrubution as the primary distribution and the expoential and Erlang distributions as the secondary ones. Parameter estimation is done using maximum likelihood estimation (MLE). Finally a real dataset is discussed to demonstrate the suitability and applicability of the proposed distribution in modeling count dataset.","PeriodicalId":13657,"journal":{"name":"Int. J. Model. Simul. Sci. Comput.","volume":"13 1","pages":"2250031:1-2250031:19"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poisson size-biased Lindley distribution and its applications\",\"authors\":\"S. Dar, Anwar Hassan, P. B. Ahmad\",\"doi\":\"10.1142/s1793962322500313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new model for count data is introduced by compounding the Poisson distribution with size-biased three-parameter Lindley distribution. Statistical properties, such as reliability, hazard rate, reverse hazard rate, Mills ratio, moments, shewness, kurtosis, moment genrating function, probability generating function and order statistics, have been discussed. Moreover, the collective risk model is discussed by considering the proposed distrubution as the primary distribution and the expoential and Erlang distributions as the secondary ones. Parameter estimation is done using maximum likelihood estimation (MLE). Finally a real dataset is discussed to demonstrate the suitability and applicability of the proposed distribution in modeling count dataset.\",\"PeriodicalId\":13657,\"journal\":{\"name\":\"Int. J. Model. Simul. Sci. Comput.\",\"volume\":\"13 1\",\"pages\":\"2250031:1-2250031:19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Model. Simul. Sci. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793962322500313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Model. Simul. Sci. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793962322500313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将泊松分布与尺寸偏置的三参数林德利分布复合,提出了一种新的计数数据模型。讨论了可靠性、危险率、逆向危险率、米尔斯比、矩、清晰度、峰度、矩生成函数、概率生成函数和序统计量等统计性质。在此基础上,以提出的分布为主要分布,以指数分布和Erlang分布为次要分布,讨论了集体风险模型。参数估计采用最大似然估计(MLE)。最后以一个实际数据集为例,验证了所提出的分布在计数数据集建模中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poisson size-biased Lindley distribution and its applications
In this paper, a new model for count data is introduced by compounding the Poisson distribution with size-biased three-parameter Lindley distribution. Statistical properties, such as reliability, hazard rate, reverse hazard rate, Mills ratio, moments, shewness, kurtosis, moment genrating function, probability generating function and order statistics, have been discussed. Moreover, the collective risk model is discussed by considering the proposed distrubution as the primary distribution and the expoential and Erlang distributions as the secondary ones. Parameter estimation is done using maximum likelihood estimation (MLE). Finally a real dataset is discussed to demonstrate the suitability and applicability of the proposed distribution in modeling count dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信