知识驱动的ART聚类算法

Zhaoyang Sun, L. Mak, K. Mao, W. Tang, Ying Liu, Kuitong Xian, Zhimin Wang, Y. Sui
{"title":"知识驱动的ART聚类算法","authors":"Zhaoyang Sun, L. Mak, K. Mao, W. Tang, Ying Liu, Kuitong Xian, Zhimin Wang, Y. Sui","doi":"10.1109/ICSESS.2014.6933651","DOIUrl":null,"url":null,"abstract":"In applications such as target detection, domain knowledge of sensed data is often available. In this paper, we incorporate the available domain knowledge into clustering process and develop a knowledge-driven Mahalanobis distance-based ART (adaptive resonance theory) clustering algorithm. The strength of the knowledge-driven algorithm is that it can automatically determine the number of clusters with improved clustering results. The validity of the new algorithm has been verified on four artificial datasets. In addition, the algorithm has been adopted in our cognition-inspired target detection and classification system, where known target library and dispersion of feature or attributes are available.","PeriodicalId":6473,"journal":{"name":"2014 IEEE 5th International Conference on Software Engineering and Service Science","volume":"1 1","pages":"645-648"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A knowledge-driven ART clustering algorithm\",\"authors\":\"Zhaoyang Sun, L. Mak, K. Mao, W. Tang, Ying Liu, Kuitong Xian, Zhimin Wang, Y. Sui\",\"doi\":\"10.1109/ICSESS.2014.6933651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In applications such as target detection, domain knowledge of sensed data is often available. In this paper, we incorporate the available domain knowledge into clustering process and develop a knowledge-driven Mahalanobis distance-based ART (adaptive resonance theory) clustering algorithm. The strength of the knowledge-driven algorithm is that it can automatically determine the number of clusters with improved clustering results. The validity of the new algorithm has been verified on four artificial datasets. In addition, the algorithm has been adopted in our cognition-inspired target detection and classification system, where known target library and dispersion of feature or attributes are available.\",\"PeriodicalId\":6473,\"journal\":{\"name\":\"2014 IEEE 5th International Conference on Software Engineering and Service Science\",\"volume\":\"1 1\",\"pages\":\"645-648\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 5th International Conference on Software Engineering and Service Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2014.6933651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 5th International Conference on Software Engineering and Service Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2014.6933651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在诸如目标检测之类的应用中,通常可以获得感测数据的领域知识。在本文中,我们将可用的领域知识纳入聚类过程,开发了一种基于知识驱动的Mahalanobis距离的ART(自适应共振理论)聚类算法。知识驱动算法的优势在于可以自动确定聚类的数量,提高聚类结果。在4个人工数据集上验证了新算法的有效性。此外,该算法已被应用于我们的认知启发的目标检测和分类系统中,该系统可以获得已知的目标库和特征或属性的离散度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A knowledge-driven ART clustering algorithm
In applications such as target detection, domain knowledge of sensed data is often available. In this paper, we incorporate the available domain knowledge into clustering process and develop a knowledge-driven Mahalanobis distance-based ART (adaptive resonance theory) clustering algorithm. The strength of the knowledge-driven algorithm is that it can automatically determine the number of clusters with improved clustering results. The validity of the new algorithm has been verified on four artificial datasets. In addition, the algorithm has been adopted in our cognition-inspired target detection and classification system, where known target library and dispersion of feature or attributes are available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信