风力涡轮机控制中的神经网络与强化学习

IF 1.1 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
Jesús Enrique Sierra-García, Matilde Santos
{"title":"风力涡轮机控制中的神经网络与强化学习","authors":"Jesús Enrique Sierra-García, Matilde Santos","doi":"10.4995/riai.2021.16111","DOIUrl":null,"url":null,"abstract":"El control del ángulo de las palas de las turbinas eólicas es complejo debido al comportamiento no lineal de los aerogeneradores, y a las perturbaciones externas a las que están sometidas debido a las condiciones cambiantes del viento y otros fenómenos meteorológicos. Esta dificultad se agrava en el caso de las turbinas flotantes marinas, donde también les afectan las corrientes marinas y las olas. Las redes neuronales, y otras técnicas del control inteligente, han demostrado ser muy útiles para el modelado y control de estos sistemas. En este trabajo se presentan diferentes configuraciones de control inteligente, basadas principalmente en redes neuronales y aprendizaje por refuerzo, aplicadas al control de las turbinas eólicas. Se describe el control directo del ángulo de las palas del aerogenerador y algunas configuraciones híbridas de control. Se expone la utilidad de los neuro-estimadores para la mejora de los controladores. Finalmente, se muestra un ejemplo de aplicación de algunas de estas técnicas en un modelo de turbina terrestre.","PeriodicalId":54463,"journal":{"name":"Revista Iberoamericana De Automatica E Informatica Industrial","volume":"29 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Redes neuronales y aprendizaje por refuerzo en el control de turbinas eólicas\",\"authors\":\"Jesús Enrique Sierra-García, Matilde Santos\",\"doi\":\"10.4995/riai.2021.16111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"El control del ángulo de las palas de las turbinas eólicas es complejo debido al comportamiento no lineal de los aerogeneradores, y a las perturbaciones externas a las que están sometidas debido a las condiciones cambiantes del viento y otros fenómenos meteorológicos. Esta dificultad se agrava en el caso de las turbinas flotantes marinas, donde también les afectan las corrientes marinas y las olas. Las redes neuronales, y otras técnicas del control inteligente, han demostrado ser muy útiles para el modelado y control de estos sistemas. En este trabajo se presentan diferentes configuraciones de control inteligente, basadas principalmente en redes neuronales y aprendizaje por refuerzo, aplicadas al control de las turbinas eólicas. Se describe el control directo del ángulo de las palas del aerogenerador y algunas configuraciones híbridas de control. Se expone la utilidad de los neuro-estimadores para la mejora de los controladores. Finalmente, se muestra un ejemplo de aplicación de algunas de estas técnicas en un modelo de turbina terrestre.\",\"PeriodicalId\":54463,\"journal\":{\"name\":\"Revista Iberoamericana De Automatica E Informatica Industrial\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Iberoamericana De Automatica E Informatica Industrial\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4995/riai.2021.16111\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Iberoamericana De Automatica E Informatica Industrial","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4995/riai.2021.16111","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 13

摘要

风力涡轮机叶片角度的控制是复杂的,因为风力涡轮机的非线性行为,以及由于风条件和其他气象现象的变化而受到的外部干扰。这种困难在海上浮动涡轮机的情况下更加严重,因为它们也受到洋流和海浪的影响。神经网络和其他智能控制技术已被证明对这些系统的建模和控制非常有用。本文提出了基于神经网络和强化学习的不同智能控制配置,并将其应用于风力涡轮机的控制。介绍了风力发电机叶片角度的直接控制和一些混合控制配置。在此基础上,提出了神经估计器在控制改进中的应用。最后,给出了其中一些技术在陆上涡轮模型中的应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Redes neuronales y aprendizaje por refuerzo en el control de turbinas eólicas
El control del ángulo de las palas de las turbinas eólicas es complejo debido al comportamiento no lineal de los aerogeneradores, y a las perturbaciones externas a las que están sometidas debido a las condiciones cambiantes del viento y otros fenómenos meteorológicos. Esta dificultad se agrava en el caso de las turbinas flotantes marinas, donde también les afectan las corrientes marinas y las olas. Las redes neuronales, y otras técnicas del control inteligente, han demostrado ser muy útiles para el modelado y control de estos sistemas. En este trabajo se presentan diferentes configuraciones de control inteligente, basadas principalmente en redes neuronales y aprendizaje por refuerzo, aplicadas al control de las turbinas eólicas. Se describe el control directo del ángulo de las palas del aerogenerador y algunas configuraciones híbridas de control. Se expone la utilidad de los neuro-estimadores para la mejora de los controladores. Finalmente, se muestra un ejemplo de aplicación de algunas de estas técnicas en un modelo de turbina terrestre.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
13.30%
发文量
15
审稿时长
>12 weeks
期刊介绍: La Revista Iberoamericana de Automática e Informática Industrial (RIAI) es el órgano de expresión del Comité Español de Automática (CEA), miembro de la Federación Internacional de Control Automático (IFAC). La revista se desarrolla en el marco de la comunidad iberoamericana, y en general, en los entornos en los que el español constituye el idioma básico y no excluyente de comunicación. RIAI engloba las siguientes temáticas: • Teoría de control y sistemas. • Ingeniería de control de procesos e instrumentación. • Técnicas de control avanzado. • Automatización y control de sistemas de producción. • Robótica y sistemas robotizados. • Arquitecturas de control y tecnología de computadores aplicada al control automático de sistemas. • Sistemas de tiempo real e informática industrial aplicados al control automático de sistemas. • Filtrado, estimación y análisis y tratamiento de señales e imágenes aplicados al control automático de sistemas. • Visión por computador aplicada al control automático de sistemas. • Modelado, identificación, simulación y optimización de sistemas. • Inteligencia computacional y técnicas de supervisión y detección de fallos aplicados al control automático de sistemas. • Historia de la automática. La automática en sistemas sociales, económicos y empresariales. • Cuestiones docentes y de formación en automática. • Control de sistemas en red y complejos a gran escala. • Control automático de procesos industriales, sistemas energéticos, mineros, ingeniería civil y edificios. • Control automático de sistemas de transporte y vehículos. • Control automático en bioingeniería, biología, agricultura, ecología y medicina. • Control automático de máquinas y motores y mecatrónica.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信