具有稳定性的可变二维线性相位IIR滤波器的设计

T. Deng
{"title":"具有稳定性的可变二维线性相位IIR滤波器的设计","authors":"T. Deng","doi":"10.1109/APCAS.1996.569270","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method for designing variable two-dimensional (2-D) linear phase recursive digital filters whose stability is always guaranteed. The method finds each variable filter coefficient as a multidimensional (M-D) polynomial of a few variables. The variables specify different frequency-domain characteristics, thus they are called the spectral parameters. In applying the resulting variable filters, substituting different spectral parameter values into the M-D polynomials will obtain different filter coefficients and thus different frequency-domain characteristics. To guarantee the stability, we first perform coefficient transformations on the denominator coefficients such that they satisfy the stability conditions. These both denominator and numerator coefficients are determined as M-D polynomials.","PeriodicalId":20507,"journal":{"name":"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1996-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Design of variable 2-D linear phase IIR filters with guaranteed stability\",\"authors\":\"T. Deng\",\"doi\":\"10.1109/APCAS.1996.569270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new method for designing variable two-dimensional (2-D) linear phase recursive digital filters whose stability is always guaranteed. The method finds each variable filter coefficient as a multidimensional (M-D) polynomial of a few variables. The variables specify different frequency-domain characteristics, thus they are called the spectral parameters. In applying the resulting variable filters, substituting different spectral parameter values into the M-D polynomials will obtain different filter coefficients and thus different frequency-domain characteristics. To guarantee the stability, we first perform coefficient transformations on the denominator coefficients such that they satisfy the stability conditions. These both denominator and numerator coefficients are determined as M-D polynomials.\",\"PeriodicalId\":20507,\"journal\":{\"name\":\"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCAS.1996.569270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCAS.1996.569270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种设计稳定性始终保证的变二维线性相位递推数字滤波器的新方法。该方法将每个变量滤波系数作为几个变量的多维(M-D)多项式。这些变量指定了不同的频域特性,因此它们被称为频谱参数。在应用所得到的变量滤波器时,将不同的频谱参数值代入M-D多项式将得到不同的滤波器系数,从而得到不同的频域特性。为了保证稳定性,我们首先对分母系数进行系数变换,使其满足稳定性条件。这些分母和分子系数被确定为M-D多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of variable 2-D linear phase IIR filters with guaranteed stability
This paper proposes a new method for designing variable two-dimensional (2-D) linear phase recursive digital filters whose stability is always guaranteed. The method finds each variable filter coefficient as a multidimensional (M-D) polynomial of a few variables. The variables specify different frequency-domain characteristics, thus they are called the spectral parameters. In applying the resulting variable filters, substituting different spectral parameter values into the M-D polynomials will obtain different filter coefficients and thus different frequency-domain characteristics. To guarantee the stability, we first perform coefficient transformations on the denominator coefficients such that they satisfy the stability conditions. These both denominator and numerator coefficients are determined as M-D polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信