一种集成升压PFC转换器的服务器电源备用结构

J. Baek, Jae-Kuk Kim, Jae-Bum Lee, Moo-Hyun Park, G. Moon
{"title":"一种集成升压PFC转换器的服务器电源备用结构","authors":"J. Baek, Jae-Kuk Kim, Jae-Bum Lee, Moo-Hyun Park, G. Moon","doi":"10.23919/IPEC.2018.8507766","DOIUrl":null,"url":null,"abstract":"In the standby stage of the server power supply, the flyback converter has been widely used due to its simple structure and low cost. However, it suffers from high voltage stress on the primary switch and large transformer size. Thus, the flyback converter in the standby stage degrades the efficiency and power density of the server power supply. To relieve these drawbacks, this paper presents a new standby structure where the standby stage is integrated with the boost PFC stage. In the proposed standby structure, since the primary side of the flyback converter is integrated into the boost PFC stage, the proposed standby structure can eliminate high voltage stress and large transformer. Furthermore, the proposed standby structure helps the boost PFC stage to achieve soft switching operation. Therefore, the proposed standby structure can improve the efficiency and power density of the server power supply. The validity of the proposed standby structure is confirmed by a prototype with 90-264Vrms AC line, 750W main output, and 12V/2A standby output.","PeriodicalId":6610,"journal":{"name":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","volume":"43 1","pages":"3100-3106"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A New Standby Structure Integrated with Boost PFC Converter for Server Power Supply\",\"authors\":\"J. Baek, Jae-Kuk Kim, Jae-Bum Lee, Moo-Hyun Park, G. Moon\",\"doi\":\"10.23919/IPEC.2018.8507766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the standby stage of the server power supply, the flyback converter has been widely used due to its simple structure and low cost. However, it suffers from high voltage stress on the primary switch and large transformer size. Thus, the flyback converter in the standby stage degrades the efficiency and power density of the server power supply. To relieve these drawbacks, this paper presents a new standby structure where the standby stage is integrated with the boost PFC stage. In the proposed standby structure, since the primary side of the flyback converter is integrated into the boost PFC stage, the proposed standby structure can eliminate high voltage stress and large transformer. Furthermore, the proposed standby structure helps the boost PFC stage to achieve soft switching operation. Therefore, the proposed standby structure can improve the efficiency and power density of the server power supply. The validity of the proposed standby structure is confirmed by a prototype with 90-264Vrms AC line, 750W main output, and 12V/2A standby output.\",\"PeriodicalId\":6610,\"journal\":{\"name\":\"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)\",\"volume\":\"43 1\",\"pages\":\"3100-3106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IPEC.2018.8507766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IPEC.2018.8507766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在服务器电源的备用阶段,反激变换器因其结构简单、成本低而得到广泛应用。但其缺点是一次开关电压应力大,变压器体积大。因此,备用级的反激变换器降低了服务器电源的效率和功率密度。为了解决这些问题,本文提出了一种新的备用结构,将备用级与升压PFC级集成在一起。在备用结构中,由于反激变换器的一次侧集成在升压PFC级中,因此备用结构可以消除高压应力和大型变压器。此外,所提出的备用结构有助于升压PFC级实现软开关操作。因此,提出的备用结构可以提高服务器电源的效率和功率密度。通过90-264Vrms交流线路、750W主输出、12V/2A备用输出的样机验证了备用结构的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Standby Structure Integrated with Boost PFC Converter for Server Power Supply
In the standby stage of the server power supply, the flyback converter has been widely used due to its simple structure and low cost. However, it suffers from high voltage stress on the primary switch and large transformer size. Thus, the flyback converter in the standby stage degrades the efficiency and power density of the server power supply. To relieve these drawbacks, this paper presents a new standby structure where the standby stage is integrated with the boost PFC stage. In the proposed standby structure, since the primary side of the flyback converter is integrated into the boost PFC stage, the proposed standby structure can eliminate high voltage stress and large transformer. Furthermore, the proposed standby structure helps the boost PFC stage to achieve soft switching operation. Therefore, the proposed standby structure can improve the efficiency and power density of the server power supply. The validity of the proposed standby structure is confirmed by a prototype with 90-264Vrms AC line, 750W main output, and 12V/2A standby output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信