基于卷积神经网络的森林火灾早期检测的高效主干

Q3 Computer Science
D. Mahanta, D. Hazarika, V. K. Nath
{"title":"基于卷积神经网络的森林火灾早期检测的高效主干","authors":"D. Mahanta, D. Hazarika, V. K. Nath","doi":"10.18178/joig.11.3.227-232","DOIUrl":null,"url":null,"abstract":"Forest fires cause disastrous damage to both human life and ecosystem. Therefore, it is essential to detect forest fires in the early stage to reduce the damage. Convolutional Neural Networks (CNNs) are widely used for forest fire detection. This paper proposes a new backbone network for a CNN-based forest fire detection model. The proposed backbone network can detect the plumes of smoke well by decomposing the conventional convolution into depth-wise and coordinate ones to better extract information from objects that spread along the vertical dimension. Experimental results show that the proposed backbone network outperforms other popular ones by achieving a detection accuracy of up to 52.6 AP.1","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Backbone for Early Forest Fire Detection Based on Convolutional Neural Networks\",\"authors\":\"D. Mahanta, D. Hazarika, V. K. Nath\",\"doi\":\"10.18178/joig.11.3.227-232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forest fires cause disastrous damage to both human life and ecosystem. Therefore, it is essential to detect forest fires in the early stage to reduce the damage. Convolutional Neural Networks (CNNs) are widely used for forest fire detection. This paper proposes a new backbone network for a CNN-based forest fire detection model. The proposed backbone network can detect the plumes of smoke well by decomposing the conventional convolution into depth-wise and coordinate ones to better extract information from objects that spread along the vertical dimension. Experimental results show that the proposed backbone network outperforms other popular ones by achieving a detection accuracy of up to 52.6 AP.1\",\"PeriodicalId\":36336,\"journal\":{\"name\":\"中国图象图形学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国图象图形学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.18178/joig.11.3.227-232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国图象图形学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.18178/joig.11.3.227-232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

森林火灾给人类生活和生态系统造成了灾难性的破坏。因此,及早发现森林火灾,减少损失至关重要。卷积神经网络(cnn)被广泛应用于森林火灾探测。本文提出了一种基于cnn的森林火灾探测模型的新型骨干网。该骨干网络将传统的卷积分解为深度卷积和坐标卷积,从而更好地提取沿垂直方向扩散的目标信息,从而很好地检测出烟雾羽流。实验结果表明,所提出的骨干网的检测精度高达52.6 AP.1,优于其他常用的骨干网
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Backbone for Early Forest Fire Detection Based on Convolutional Neural Networks
Forest fires cause disastrous damage to both human life and ecosystem. Therefore, it is essential to detect forest fires in the early stage to reduce the damage. Convolutional Neural Networks (CNNs) are widely used for forest fire detection. This paper proposes a new backbone network for a CNN-based forest fire detection model. The proposed backbone network can detect the plumes of smoke well by decomposing the conventional convolution into depth-wise and coordinate ones to better extract information from objects that spread along the vertical dimension. Experimental results show that the proposed backbone network outperforms other popular ones by achieving a detection accuracy of up to 52.6 AP.1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国图象图形学报
中国图象图形学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6776
期刊介绍: Journal of Image and Graphics (ISSN 1006-8961, CN 11-3758/TB, CODEN ZTTXFZ) is an authoritative academic journal supervised by the Chinese Academy of Sciences and co-sponsored by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (ISIAS), the Chinese Society of Image and Graphics (CSIG), and the Beijing Institute of Applied Physics and Computational Mathematics (BIAPM). The journal integrates high-tech theories, technical methods and industrialisation of applied research results in computer image graphics, and mainly publishes innovative and high-level scientific research papers on basic and applied research in image graphics science and its closely related fields. The form of papers includes reviews, technical reports, project progress, academic news, new technology reviews, new product introduction and industrialisation research. The content covers a wide range of fields such as image analysis and recognition, image understanding and computer vision, computer graphics, virtual reality and augmented reality, system simulation, animation, etc., and theme columns are opened according to the research hotspots and cutting-edge topics. Journal of Image and Graphics reaches a wide range of readers, including scientific and technical personnel, enterprise supervisors, and postgraduates and college students of colleges and universities engaged in the fields of national defence, military, aviation, aerospace, communications, electronics, automotive, agriculture, meteorology, environmental protection, remote sensing, mapping, oil field, construction, transportation, finance, telecommunications, education, medical care, film and television, and art. Journal of Image and Graphics is included in many important domestic and international scientific literature database systems, including EBSCO database in the United States, JST database in Japan, Scopus database in the Netherlands, China Science and Technology Thesis Statistics and Analysis (Annual Research Report), China Science Citation Database (CSCD), China Academic Journal Network Publishing Database (CAJD), and China Academic Journal Network Publishing Database (CAJD). China Science Citation Database (CSCD), China Academic Journals Network Publishing Database (CAJD), China Academic Journal Abstracts, Chinese Science Abstracts (Series A), China Electronic Science Abstracts, Chinese Core Journals Abstracts, Chinese Academic Journals on CD-ROM, and China Academic Journals Comprehensive Evaluation Database.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信