双曲型超材料的深紫外等离子体纳米激光器

K. Shen, Yuh-Jen Cheng, D. Tsai
{"title":"双曲型超材料的深紫外等离子体纳米激光器","authors":"K. Shen, Yuh-Jen Cheng, D. Tsai","doi":"10.1117/2.1201704.006757","DOIUrl":null,"url":null,"abstract":"In recent years, plasmonic nanostructured materials have been used to enhance light emission by creating localized electric fields that confine light fields to regions below the diffraction limit of the material, resulting in efficient lightmatter interactions.1 Plasmonic nanolasers based on these materials have been developed by using, for example, a dielectric nanowire or nanorod gain material—the laser amplification medium—placed on a metal film or silica/metal structure to form a Fabry-Pérot cavity resonator (an arrangement of mirrors for multiple light reflection).2, 3 However, the nanowire or nanorod length in these plasmonic nanolasers is often fairly long (several micrometers) and it is not easy to control the nanowire/nanorod orientation, which limits the potential applications of these devices. Here, we discuss our recent work using a metal-dielectric hyperbolic metamaterial (HMM)—a material engineered to exhibit extreme anisotropy upon interaction with light—as a plasmonic cavity to demonstrate a 289nm UV plasmonic nanolaser. Although the quantum well heterostructures used in these nanolasers, which increase the strength of electro-optical interactions, have a low internal quantum efficiency of 30%, the strong light-matter coupling introduced by the HMM plasmonic cavity can still bring the devices above the lasing threshold. The dispersion relation (the effect of a dispersive medium on the properties of a light wave) of the stacked metal-dielectric HMM is given by:","PeriodicalId":22075,"journal":{"name":"Spie Newsroom","volume":"77 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep-UV plasmonic nanolaser with hyperbolic metamaterials\",\"authors\":\"K. Shen, Yuh-Jen Cheng, D. Tsai\",\"doi\":\"10.1117/2.1201704.006757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, plasmonic nanostructured materials have been used to enhance light emission by creating localized electric fields that confine light fields to regions below the diffraction limit of the material, resulting in efficient lightmatter interactions.1 Plasmonic nanolasers based on these materials have been developed by using, for example, a dielectric nanowire or nanorod gain material—the laser amplification medium—placed on a metal film or silica/metal structure to form a Fabry-Pérot cavity resonator (an arrangement of mirrors for multiple light reflection).2, 3 However, the nanowire or nanorod length in these plasmonic nanolasers is often fairly long (several micrometers) and it is not easy to control the nanowire/nanorod orientation, which limits the potential applications of these devices. Here, we discuss our recent work using a metal-dielectric hyperbolic metamaterial (HMM)—a material engineered to exhibit extreme anisotropy upon interaction with light—as a plasmonic cavity to demonstrate a 289nm UV plasmonic nanolaser. Although the quantum well heterostructures used in these nanolasers, which increase the strength of electro-optical interactions, have a low internal quantum efficiency of 30%, the strong light-matter coupling introduced by the HMM plasmonic cavity can still bring the devices above the lasing threshold. The dispersion relation (the effect of a dispersive medium on the properties of a light wave) of the stacked metal-dielectric HMM is given by:\",\"PeriodicalId\":22075,\"journal\":{\"name\":\"Spie Newsroom\",\"volume\":\"77 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spie Newsroom\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/2.1201704.006757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spie Newsroom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/2.1201704.006757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,等离子体纳米结构材料已被用于增强光发射,通过创建局部电场,将光场限制在材料的衍射极限以下的区域,从而产生有效的光物质相互作用基于这些材料的等离子体纳米激光器已经被开发出来,例如,使用介电纳米线或纳米棒增益材料——激光放大介质——放置在金属薄膜或二氧化硅/金属结构上,形成法布里-帕姆罗特腔谐振器(一种用于多次光反射的镜子排列)。然而,这些等离子体纳米激光器中的纳米线或纳米棒长度通常相当长(几微米),并且纳米线/纳米棒的方向不易控制,这限制了这些器件的潜在应用。在这里,我们讨论了我们最近的工作,使用金属介电双曲超材料(HMM) -一种在与光相互作用时表现出极端各向异性的材料-作为等离子体腔来演示289nm紫外等离子体纳米激光器。虽然这些纳米激光器中使用的量子阱异质结构增加了电光相互作用的强度,但内部量子效率较低,只有30%,但HMM等离子体腔引入的强光-物质耦合仍然可以使器件超过激光阈值。叠层金属介质HMM的色散关系(色散介质对光波性质的影响)由下式给出:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep-UV plasmonic nanolaser with hyperbolic metamaterials
In recent years, plasmonic nanostructured materials have been used to enhance light emission by creating localized electric fields that confine light fields to regions below the diffraction limit of the material, resulting in efficient lightmatter interactions.1 Plasmonic nanolasers based on these materials have been developed by using, for example, a dielectric nanowire or nanorod gain material—the laser amplification medium—placed on a metal film or silica/metal structure to form a Fabry-Pérot cavity resonator (an arrangement of mirrors for multiple light reflection).2, 3 However, the nanowire or nanorod length in these plasmonic nanolasers is often fairly long (several micrometers) and it is not easy to control the nanowire/nanorod orientation, which limits the potential applications of these devices. Here, we discuss our recent work using a metal-dielectric hyperbolic metamaterial (HMM)—a material engineered to exhibit extreme anisotropy upon interaction with light—as a plasmonic cavity to demonstrate a 289nm UV plasmonic nanolaser. Although the quantum well heterostructures used in these nanolasers, which increase the strength of electro-optical interactions, have a low internal quantum efficiency of 30%, the strong light-matter coupling introduced by the HMM plasmonic cavity can still bring the devices above the lasing threshold. The dispersion relation (the effect of a dispersive medium on the properties of a light wave) of the stacked metal-dielectric HMM is given by:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信