粗糙路径驱动的微分方程:一种离散逼近方法

A. Davie
{"title":"粗糙路径驱动的微分方程:一种离散逼近方法","authors":"A. Davie","doi":"10.1093/AMRX/ABM009","DOIUrl":null,"url":null,"abstract":"driving path x(t) is nondifferentiable, has recently been developed by Lyons. I develop an alternative approach to this theory, using (modified) Euler approximations, and investigate its applicability to stochastic differential equations driven by Brownian motion. I also give some other examples showing that the main results are reasonably sharp.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2007-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"212","resultStr":"{\"title\":\"Differential Equations Driven by Rough Paths: An Approach via Discrete Approximation\",\"authors\":\"A. Davie\",\"doi\":\"10.1093/AMRX/ABM009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"driving path x(t) is nondifferentiable, has recently been developed by Lyons. I develop an alternative approach to this theory, using (modified) Euler approximations, and investigate its applicability to stochastic differential equations driven by Brownian motion. I also give some other examples showing that the main results are reasonably sharp.\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"212\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/AMRX/ABM009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/AMRX/ABM009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 212

摘要

驱动路径x(t)是不可微的,最近由Lyons提出。我开发了一种替代方法,使用(修改的)欧拉近似,并研究其对布朗运动驱动的随机微分方程的适用性。我还提供了一些其他的例子来说明主要的结果是相当清晰的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential Equations Driven by Rough Paths: An Approach via Discrete Approximation
driving path x(t) is nondifferentiable, has recently been developed by Lyons. I develop an alternative approach to this theory, using (modified) Euler approximations, and investigate its applicability to stochastic differential equations driven by Brownian motion. I also give some other examples showing that the main results are reasonably sharp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信