Jean-Luc Lugrin, Fred Charles, M. Cavazza, M. Renard, J. Freeman, J. Lessiter
{"title":"CaveUDK:一个VR游戏引擎中间件","authors":"Jean-Luc Lugrin, Fred Charles, M. Cavazza, M. Renard, J. Freeman, J. Lessiter","doi":"10.1145/2407336.2407363","DOIUrl":null,"url":null,"abstract":"Previous attempts at developing immersive versions of game engines have faced difficulties in achieving both overall high performance and preserving reusability of software developments. In this paper, we present a high-level VR middleware based on one of the most successful commercial game engines: the Unreal® Engine 3.0 (UE3). We describe a VR framework implemented as an extension to the Unreal® Development Kit (UDK) supporting CAVE\"-like installations. Our approach relies on a distributed architecture reinforced by specific replication patterns to synchronize the user's point of view and interactions within a multi-screen installation. Our performance benchmarks indicated that our immersive port does not affect the game engine performance, even with complex real-time applications, such as fast-paced multiplayer First Person Shooter (FPS) games or high-resolution graphical environments with 2M+ polygons. A user study also demonstrated the capacity of our VR middleware to elicit high spatial presence while maintaining low cybersickness effects. With free distribution, we believe such a platform can support future Entertainment and VR research.","PeriodicalId":93673,"journal":{"name":"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology","volume":"39 1","pages":"137-144"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"CaveUDK: a VR game engine middleware\",\"authors\":\"Jean-Luc Lugrin, Fred Charles, M. Cavazza, M. Renard, J. Freeman, J. Lessiter\",\"doi\":\"10.1145/2407336.2407363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous attempts at developing immersive versions of game engines have faced difficulties in achieving both overall high performance and preserving reusability of software developments. In this paper, we present a high-level VR middleware based on one of the most successful commercial game engines: the Unreal® Engine 3.0 (UE3). We describe a VR framework implemented as an extension to the Unreal® Development Kit (UDK) supporting CAVE\\\"-like installations. Our approach relies on a distributed architecture reinforced by specific replication patterns to synchronize the user's point of view and interactions within a multi-screen installation. Our performance benchmarks indicated that our immersive port does not affect the game engine performance, even with complex real-time applications, such as fast-paced multiplayer First Person Shooter (FPS) games or high-resolution graphical environments with 2M+ polygons. A user study also demonstrated the capacity of our VR middleware to elicit high spatial presence while maintaining low cybersickness effects. With free distribution, we believe such a platform can support future Entertainment and VR research.\",\"PeriodicalId\":93673,\"journal\":{\"name\":\"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology\",\"volume\":\"39 1\",\"pages\":\"137-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2407336.2407363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2407336.2407363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Previous attempts at developing immersive versions of game engines have faced difficulties in achieving both overall high performance and preserving reusability of software developments. In this paper, we present a high-level VR middleware based on one of the most successful commercial game engines: the Unreal® Engine 3.0 (UE3). We describe a VR framework implemented as an extension to the Unreal® Development Kit (UDK) supporting CAVE"-like installations. Our approach relies on a distributed architecture reinforced by specific replication patterns to synchronize the user's point of view and interactions within a multi-screen installation. Our performance benchmarks indicated that our immersive port does not affect the game engine performance, even with complex real-time applications, such as fast-paced multiplayer First Person Shooter (FPS) games or high-resolution graphical environments with 2M+ polygons. A user study also demonstrated the capacity of our VR middleware to elicit high spatial presence while maintaining low cybersickness effects. With free distribution, we believe such a platform can support future Entertainment and VR research.