Nurudeen Awokoya Kehinde, Tshentu Zenixole, T. Nelson
{"title":"多模板交联分子印迹电纺丝纳米纤维的制备及其对有机介质中镍和四苯基钒卟啉选择性萃取的评价","authors":"Nurudeen Awokoya Kehinde, Tshentu Zenixole, T. Nelson","doi":"10.5897/AJPAC2015.0648","DOIUrl":null,"url":null,"abstract":"A nickel vanadyl molecularly imprinted nanofiber (NVMIN) was developed by the electrospinning technique, employing polyethylene terephthalate (PET) and linear polyethylenimine (L-PEI) as the matrix polymers, nickel tetraphenylporphyrin (NTPP) and vanadyl tetraphenylporphyrin (VTPP) as the mixed-template molecules. The fabricated NVMIN was evaluated as a sorbent for the removal of NTPP and VTPP from organic media. The effects of trifluoroacetic acid (TFA), dichloromethane (DCM), dimethyl sulphoxide (DMSO), pentane (PEN) on electro-spinnability of the PET/L-PEI solutions and the morphological appearance of the PET/L-PEI fibers were investigated qualitatively by means of a scanning electron microscope (SEM). Electrospinning of 14 to 30% w/v PET/L-PEI solutions in TFA produced beaded and smooth fibers, depending on the concentration range. The addition of DCM and PEN as modifiers helped improve the electrospinnability, with PEN being the best, while the addition of DMSO made the solutions not spinnable. The results indicated that the NVMIN showed higher affinity (99% higher) for NTPP than the non-imprinted nanofiber (NIN) indicating that the NVMIN contained a lot of specific binding sites. It was determined that the NVMIN exhibited the same selectivity specialism for both NTPP and VTPP. However, the interaction strength was strongly dependant on the type of solvent, where the strongest interaction was achieved in chloroform. In addition, the thermodynamic parameters calculated from the adsorption data suggested that the adsorption of NTPP onto NVMIN was a spontaneous and exothermic process. \n \n Key words: Electrospinning, mixed-templates, adsorption, demetallation, solvents.","PeriodicalId":7556,"journal":{"name":"African Journal of Pure and Applied Chemistry","volume":"30 1","pages":"223-239"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fabrication and evaluation of multiple template cross-linked molecularly imprinted electro spun nanofibers for selective extraction of nickel and vanadyl tetraphenylporphyrin from organic media\",\"authors\":\"Nurudeen Awokoya Kehinde, Tshentu Zenixole, T. Nelson\",\"doi\":\"10.5897/AJPAC2015.0648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nickel vanadyl molecularly imprinted nanofiber (NVMIN) was developed by the electrospinning technique, employing polyethylene terephthalate (PET) and linear polyethylenimine (L-PEI) as the matrix polymers, nickel tetraphenylporphyrin (NTPP) and vanadyl tetraphenylporphyrin (VTPP) as the mixed-template molecules. The fabricated NVMIN was evaluated as a sorbent for the removal of NTPP and VTPP from organic media. The effects of trifluoroacetic acid (TFA), dichloromethane (DCM), dimethyl sulphoxide (DMSO), pentane (PEN) on electro-spinnability of the PET/L-PEI solutions and the morphological appearance of the PET/L-PEI fibers were investigated qualitatively by means of a scanning electron microscope (SEM). Electrospinning of 14 to 30% w/v PET/L-PEI solutions in TFA produced beaded and smooth fibers, depending on the concentration range. The addition of DCM and PEN as modifiers helped improve the electrospinnability, with PEN being the best, while the addition of DMSO made the solutions not spinnable. The results indicated that the NVMIN showed higher affinity (99% higher) for NTPP than the non-imprinted nanofiber (NIN) indicating that the NVMIN contained a lot of specific binding sites. It was determined that the NVMIN exhibited the same selectivity specialism for both NTPP and VTPP. However, the interaction strength was strongly dependant on the type of solvent, where the strongest interaction was achieved in chloroform. In addition, the thermodynamic parameters calculated from the adsorption data suggested that the adsorption of NTPP onto NVMIN was a spontaneous and exothermic process. \\n \\n Key words: Electrospinning, mixed-templates, adsorption, demetallation, solvents.\",\"PeriodicalId\":7556,\"journal\":{\"name\":\"African Journal of Pure and Applied Chemistry\",\"volume\":\"30 1\",\"pages\":\"223-239\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"African Journal of Pure and Applied Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5897/AJPAC2015.0648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"African Journal of Pure and Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5897/AJPAC2015.0648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication and evaluation of multiple template cross-linked molecularly imprinted electro spun nanofibers for selective extraction of nickel and vanadyl tetraphenylporphyrin from organic media
A nickel vanadyl molecularly imprinted nanofiber (NVMIN) was developed by the electrospinning technique, employing polyethylene terephthalate (PET) and linear polyethylenimine (L-PEI) as the matrix polymers, nickel tetraphenylporphyrin (NTPP) and vanadyl tetraphenylporphyrin (VTPP) as the mixed-template molecules. The fabricated NVMIN was evaluated as a sorbent for the removal of NTPP and VTPP from organic media. The effects of trifluoroacetic acid (TFA), dichloromethane (DCM), dimethyl sulphoxide (DMSO), pentane (PEN) on electro-spinnability of the PET/L-PEI solutions and the morphological appearance of the PET/L-PEI fibers were investigated qualitatively by means of a scanning electron microscope (SEM). Electrospinning of 14 to 30% w/v PET/L-PEI solutions in TFA produced beaded and smooth fibers, depending on the concentration range. The addition of DCM and PEN as modifiers helped improve the electrospinnability, with PEN being the best, while the addition of DMSO made the solutions not spinnable. The results indicated that the NVMIN showed higher affinity (99% higher) for NTPP than the non-imprinted nanofiber (NIN) indicating that the NVMIN contained a lot of specific binding sites. It was determined that the NVMIN exhibited the same selectivity specialism for both NTPP and VTPP. However, the interaction strength was strongly dependant on the type of solvent, where the strongest interaction was achieved in chloroform. In addition, the thermodynamic parameters calculated from the adsorption data suggested that the adsorption of NTPP onto NVMIN was a spontaneous and exothermic process.
Key words: Electrospinning, mixed-templates, adsorption, demetallation, solvents.