{"title":"Erdős-Szekeres多维数组定理","authors":"Matija Bucić, B. Sudakov, T. Tran","doi":"10.4171/jems/1262","DOIUrl":null,"url":null,"abstract":"The classical Erdős-Szekeres theorem dating back almost a hundred years states that any sequence of (n − 1) + 1 distinct real numbers contains a monotone subsequence of length n. This theorem has been generalised to higher dimensions in a variety of ways but perhaps the most natural one was proposed by Fishburn and Graham more than 25 years ago. They defined the concept of a monotone and a lex-monotone array and asked how large an array one needs in order to be able to find a monotone or a lex-monotone subarray of size n× . . .×n. Fishburn and Graham obtained Ackerman-type bounds in both cases. We significantly improve these results. Regardless of the dimension we obtain at most a triple exponential bound in n in the monotone case and a quadruple exponential one in the lex-monotone case.","PeriodicalId":50003,"journal":{"name":"Journal of the European Mathematical Society","volume":"311 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Erdős–Szekeres theorem for multidimensional arrays\",\"authors\":\"Matija Bucić, B. Sudakov, T. Tran\",\"doi\":\"10.4171/jems/1262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classical Erdős-Szekeres theorem dating back almost a hundred years states that any sequence of (n − 1) + 1 distinct real numbers contains a monotone subsequence of length n. This theorem has been generalised to higher dimensions in a variety of ways but perhaps the most natural one was proposed by Fishburn and Graham more than 25 years ago. They defined the concept of a monotone and a lex-monotone array and asked how large an array one needs in order to be able to find a monotone or a lex-monotone subarray of size n× . . .×n. Fishburn and Graham obtained Ackerman-type bounds in both cases. We significantly improve these results. Regardless of the dimension we obtain at most a triple exponential bound in n in the monotone case and a quadruple exponential one in the lex-monotone case.\",\"PeriodicalId\":50003,\"journal\":{\"name\":\"Journal of the European Mathematical Society\",\"volume\":\"311 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jems/1262\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jems/1262","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Erdős–Szekeres theorem for multidimensional arrays
The classical Erdős-Szekeres theorem dating back almost a hundred years states that any sequence of (n − 1) + 1 distinct real numbers contains a monotone subsequence of length n. This theorem has been generalised to higher dimensions in a variety of ways but perhaps the most natural one was proposed by Fishburn and Graham more than 25 years ago. They defined the concept of a monotone and a lex-monotone array and asked how large an array one needs in order to be able to find a monotone or a lex-monotone subarray of size n× . . .×n. Fishburn and Graham obtained Ackerman-type bounds in both cases. We significantly improve these results. Regardless of the dimension we obtain at most a triple exponential bound in n in the monotone case and a quadruple exponential one in the lex-monotone case.
期刊介绍:
The Journal of the European Mathematical Society (JEMS) is the official journal of the EMS.
The Society, founded in 1990, works at promoting joint scientific efforts between the many different structures that characterize European mathematics. JEMS will publish research articles in all active areas of pure and applied mathematics. These will be selected by a distinguished, international board of editors for their outstanding quality and interest, according to the highest international standards.
Occasionally, substantial survey papers on topics of exceptional interest will also be published. Starting in 1999, the Journal was published by Springer-Verlag until the end of 2003. Since 2004 it is published by the EMS Publishing House. The first Editor-in-Chief of the Journal was J. Jost, succeeded by H. Brezis in 2004.
The Journal of the European Mathematical Society is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.