各向同性格拉斯曼图、plpl克图和Cartan图

F. Balogh, J. Harnad, J. Hurtubise
{"title":"各向同性格拉斯曼图、plpl<e:1>克图和Cartan图","authors":"F. Balogh, J. Harnad, J. Hurtubise","doi":"10.1063/5.0021269","DOIUrl":null,"url":null,"abstract":"This work is motivated by the relation between the KP and BKP integrable hierarchies, whose $\\tau$-functions may be viewed as sections of dual determinantal and Pfaffian line bundles over infinite dimensional Grassmannians. In finite dimensions, we show how to relate the Cartan map which, for a vector space $V$ of dimension $N$, embeds the Grassmannian ${\\mathrm {Gr}}^0_V(V+V^*)$ of maximal isotropic subspaces of $V+ V^*$, with respect to the natural scalar product, into the projectivization of the exterior space $\\Lambda(V)$, and the Plucker map, which embeds the Grassmannian ${\\mathrm {Gr}}_V(V+ V^*)$ of all $N$-planes in $V+ V^*$ into the projectivization of $\\Lambda^N(V + V^*)$. The Plucker coordinates on ${\\mathrm {Gr}}^0_V(V+V^*)$ are expressed bilinearly in terms of the Cartan coordinates, which are holomorphic sections of the dual Pfaffian line bundle ${\\mathrm {Pf}}^* \\rightarrow {\\mathrm {Gr}}^0_V(V+V^*, Q)$. In terms of affine coordinates on the big cell, this is equivalent to an identity of Cauchy-Binet type, expressing the determinants of square submatrices of a skew symmetric $N \\times N$ matrix as bilinear sums over the Pfaffians of their principal minors.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Isotropic Grassmannians, Plücker and Cartan maps\",\"authors\":\"F. Balogh, J. Harnad, J. Hurtubise\",\"doi\":\"10.1063/5.0021269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is motivated by the relation between the KP and BKP integrable hierarchies, whose $\\\\tau$-functions may be viewed as sections of dual determinantal and Pfaffian line bundles over infinite dimensional Grassmannians. In finite dimensions, we show how to relate the Cartan map which, for a vector space $V$ of dimension $N$, embeds the Grassmannian ${\\\\mathrm {Gr}}^0_V(V+V^*)$ of maximal isotropic subspaces of $V+ V^*$, with respect to the natural scalar product, into the projectivization of the exterior space $\\\\Lambda(V)$, and the Plucker map, which embeds the Grassmannian ${\\\\mathrm {Gr}}_V(V+ V^*)$ of all $N$-planes in $V+ V^*$ into the projectivization of $\\\\Lambda^N(V + V^*)$. The Plucker coordinates on ${\\\\mathrm {Gr}}^0_V(V+V^*)$ are expressed bilinearly in terms of the Cartan coordinates, which are holomorphic sections of the dual Pfaffian line bundle ${\\\\mathrm {Pf}}^* \\\\rightarrow {\\\\mathrm {Gr}}^0_V(V+V^*, Q)$. In terms of affine coordinates on the big cell, this is equivalent to an identity of Cauchy-Binet type, expressing the determinants of square submatrices of a skew symmetric $N \\\\times N$ matrix as bilinear sums over the Pfaffians of their principal minors.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0021269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0021269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

这项工作的动机是KP和BKP可积层次之间的关系,其$\tau$ -函数可以看作是无限维格拉斯曼图上的对偶行列式和Pfaffian线束的部分。在有限维度中,我们展示了如何将Cartan映射(对于维度为$N$的向量空间$V$,将$V+ V^*$的最大各向同性子空间的Grassmannian ${\mathrm {Gr}}^0_V(V+V^*)$关于自然标量积嵌入到外部空间$\Lambda(V)$的投影中)与Plucker映射联系起来,它将$V+ V^*$中所有$N$ -平面的格拉斯曼式${\mathrm {Gr}}_V(V+ V^*)$嵌入到$\Lambda^N(V + V^*)$的投影中。${\mathrm {Gr}}^0_V(V+V^*)$上的Plucker坐标用Cartan坐标双线性表示,Cartan坐标是对偶Pfaffian线束${\mathrm {Pf}}^* \rightarrow {\mathrm {Gr}}^0_V(V+V^*, Q)$的全纯截面。就大单元格上的仿射坐标而言,这相当于柯西-比奈型恒等式,将偏对称$N \times N$矩阵的方子矩阵的行列式表示为其主副矩阵的双线性和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isotropic Grassmannians, Plücker and Cartan maps
This work is motivated by the relation between the KP and BKP integrable hierarchies, whose $\tau$-functions may be viewed as sections of dual determinantal and Pfaffian line bundles over infinite dimensional Grassmannians. In finite dimensions, we show how to relate the Cartan map which, for a vector space $V$ of dimension $N$, embeds the Grassmannian ${\mathrm {Gr}}^0_V(V+V^*)$ of maximal isotropic subspaces of $V+ V^*$, with respect to the natural scalar product, into the projectivization of the exterior space $\Lambda(V)$, and the Plucker map, which embeds the Grassmannian ${\mathrm {Gr}}_V(V+ V^*)$ of all $N$-planes in $V+ V^*$ into the projectivization of $\Lambda^N(V + V^*)$. The Plucker coordinates on ${\mathrm {Gr}}^0_V(V+V^*)$ are expressed bilinearly in terms of the Cartan coordinates, which are holomorphic sections of the dual Pfaffian line bundle ${\mathrm {Pf}}^* \rightarrow {\mathrm {Gr}}^0_V(V+V^*, Q)$. In terms of affine coordinates on the big cell, this is equivalent to an identity of Cauchy-Binet type, expressing the determinants of square submatrices of a skew symmetric $N \times N$ matrix as bilinear sums over the Pfaffians of their principal minors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信