带矩形乘法器的x86微处理器的浮点除法算法

M. Schulte, Dimitri Tan, C. Lemonds
{"title":"带矩形乘法器的x86微处理器的浮点除法算法","authors":"M. Schulte, Dimitri Tan, C. Lemonds","doi":"10.1109/ICCD.2007.4601917","DOIUrl":null,"url":null,"abstract":"Floating-point division is an important operation in scientific computing and multimedia applications. This paper presents and compares two division algorithms for an times86 microprocessor, which utilizes a rectangular multiplier that is optimized for multimedia applications. The proposed division algorithms are based on Goldschmidt's division algorithm and provide correctly rounded results for IEEE 754 single, double, and extended precision floating-point numbers. Compared to a previous Goldschmidt division algorithm, the fastest proposed algorithm requires 25% to 37% fewer cycles, while utilizing a multiplier that is roughly 2.5 times smaller.","PeriodicalId":6306,"journal":{"name":"2007 25th International Conference on Computer Design","volume":"39 1","pages":"304-310"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Floating-point division algorithms for an x86 microprocessor with a rectangular multiplier\",\"authors\":\"M. Schulte, Dimitri Tan, C. Lemonds\",\"doi\":\"10.1109/ICCD.2007.4601917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Floating-point division is an important operation in scientific computing and multimedia applications. This paper presents and compares two division algorithms for an times86 microprocessor, which utilizes a rectangular multiplier that is optimized for multimedia applications. The proposed division algorithms are based on Goldschmidt's division algorithm and provide correctly rounded results for IEEE 754 single, double, and extended precision floating-point numbers. Compared to a previous Goldschmidt division algorithm, the fastest proposed algorithm requires 25% to 37% fewer cycles, while utilizing a multiplier that is roughly 2.5 times smaller.\",\"PeriodicalId\":6306,\"journal\":{\"name\":\"2007 25th International Conference on Computer Design\",\"volume\":\"39 1\",\"pages\":\"304-310\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 25th International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2007.4601917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 25th International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2007.4601917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

浮点除法是科学计算和多媒体应用中的重要运算。本文介绍并比较了两种适用于times86微处理器的除法算法,该微处理器采用了针对多媒体应用进行优化的矩形乘法器。所提出的除法算法基于Goldschmidt的除法算法,并为IEEE 754单精度、双精度和扩展精度浮点数提供正确的舍入结果。与之前的Goldschmidt除法算法相比,最快的算法需要减少25%到37%的周期,同时使用的乘法器大约小2.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Floating-point division algorithms for an x86 microprocessor with a rectangular multiplier
Floating-point division is an important operation in scientific computing and multimedia applications. This paper presents and compares two division algorithms for an times86 microprocessor, which utilizes a rectangular multiplier that is optimized for multimedia applications. The proposed division algorithms are based on Goldschmidt's division algorithm and provide correctly rounded results for IEEE 754 single, double, and extended precision floating-point numbers. Compared to a previous Goldschmidt division algorithm, the fastest proposed algorithm requires 25% to 37% fewer cycles, while utilizing a multiplier that is roughly 2.5 times smaller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信