{"title":"电热发射装置中烧蚀控制电弧的一维时变模型","authors":"Baoming Li, Hong-zhi Li","doi":"10.1109/PPC.1999.823601","DOIUrl":null,"url":null,"abstract":"High-pressure discharges in ablative capillaries are used to couple electrically stored energy sources to hot plasma jets efficiently, for example, as plasma sources in launchers. A time-dependent quasi-one-dimensional model is developed for studying high-pressure discharges in ablative capillaries. As opposed to most of the previous work, a modified method calculating thermodynamic and transport properties of multi-component plasma under LTE conditions and a semi-empirical scaling law for the fraction of blackbody radiation that is transmitted through the ablating vapor for insulators under high heat flux conditions are utilized. With regard to the numerical code, the authors have examined the effects of the explicit two-step scheme of MacCormack and implicit continuous-fluid Eulerian scheme, respectively. The calculations show that some of the well-known experimental features of these kinds of discharges are confirmed by the numerical solutions obtained here. Numerical simulation was compared against experimental results obtained by the authors.","PeriodicalId":11209,"journal":{"name":"Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358)","volume":"3 1","pages":"670-672 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A time-dependent one-dimensional model of ablation-controlled arcs in electrothermal launchers\",\"authors\":\"Baoming Li, Hong-zhi Li\",\"doi\":\"10.1109/PPC.1999.823601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-pressure discharges in ablative capillaries are used to couple electrically stored energy sources to hot plasma jets efficiently, for example, as plasma sources in launchers. A time-dependent quasi-one-dimensional model is developed for studying high-pressure discharges in ablative capillaries. As opposed to most of the previous work, a modified method calculating thermodynamic and transport properties of multi-component plasma under LTE conditions and a semi-empirical scaling law for the fraction of blackbody radiation that is transmitted through the ablating vapor for insulators under high heat flux conditions are utilized. With regard to the numerical code, the authors have examined the effects of the explicit two-step scheme of MacCormack and implicit continuous-fluid Eulerian scheme, respectively. The calculations show that some of the well-known experimental features of these kinds of discharges are confirmed by the numerical solutions obtained here. Numerical simulation was compared against experimental results obtained by the authors.\",\"PeriodicalId\":11209,\"journal\":{\"name\":\"Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358)\",\"volume\":\"3 1\",\"pages\":\"670-672 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPC.1999.823601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC.1999.823601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A time-dependent one-dimensional model of ablation-controlled arcs in electrothermal launchers
High-pressure discharges in ablative capillaries are used to couple electrically stored energy sources to hot plasma jets efficiently, for example, as plasma sources in launchers. A time-dependent quasi-one-dimensional model is developed for studying high-pressure discharges in ablative capillaries. As opposed to most of the previous work, a modified method calculating thermodynamic and transport properties of multi-component plasma under LTE conditions and a semi-empirical scaling law for the fraction of blackbody radiation that is transmitted through the ablating vapor for insulators under high heat flux conditions are utilized. With regard to the numerical code, the authors have examined the effects of the explicit two-step scheme of MacCormack and implicit continuous-fluid Eulerian scheme, respectively. The calculations show that some of the well-known experimental features of these kinds of discharges are confirmed by the numerical solutions obtained here. Numerical simulation was compared against experimental results obtained by the authors.