{"title":"范数在平面上以11范数得到双线性形式","authors":"Sung Guen Kim","doi":"10.2478/ausm-2022-0008","DOIUrl":null,"url":null,"abstract":"Abstract For given unit vectors x1, · · ·, xn of a real Banach space E, we define NA(ℒ(nE))(x1,…xn)={ T∈ℒ(nE):| T(x1,…xn) |=‖ T ‖=1 }, NA\\left( {\\mathcal{L}\\left( {^nE} \\right)} \\right)\\left( {{x_1}, \\ldots {x_n}} \\right) = \\left\\{ {T \\in \\mathcal{L}\\left( {^nE} \\right):\\left| {T\\left( {{x_1}, \\ldots {x_n}} \\right)} \\right| = \\left\\| T \\right\\| = 1} \\right\\}, where ℒ(nE) denotes the Banach space of all continuous n-linear forms on E endowed with the norm ||T|| = sup||xk||=1,1≤k≤n |T(x1, . . ., xn)|. In this paper, we classify NA(ℒ(2l12))((x1, x2), (y1, y2)) for unit vectors (x1, x2), (y1, y2)∈ l12, where l12 = ℝ2 with the l1-norm.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Norm attaining bilinear forms on the plane with the l1-norm\",\"authors\":\"Sung Guen Kim\",\"doi\":\"10.2478/ausm-2022-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For given unit vectors x1, · · ·, xn of a real Banach space E, we define NA(ℒ(nE))(x1,…xn)={ T∈ℒ(nE):| T(x1,…xn) |=‖ T ‖=1 }, NA\\\\left( {\\\\mathcal{L}\\\\left( {^nE} \\\\right)} \\\\right)\\\\left( {{x_1}, \\\\ldots {x_n}} \\\\right) = \\\\left\\\\{ {T \\\\in \\\\mathcal{L}\\\\left( {^nE} \\\\right):\\\\left| {T\\\\left( {{x_1}, \\\\ldots {x_n}} \\\\right)} \\\\right| = \\\\left\\\\| T \\\\right\\\\| = 1} \\\\right\\\\}, where ℒ(nE) denotes the Banach space of all continuous n-linear forms on E endowed with the norm ||T|| = sup||xk||=1,1≤k≤n |T(x1, . . ., xn)|. In this paper, we classify NA(ℒ(2l12))((x1, x2), (y1, y2)) for unit vectors (x1, x2), (y1, y2)∈ l12, where l12 = ℝ2 with the l1-norm.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2022-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2022-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Norm attaining bilinear forms on the plane with the l1-norm
Abstract For given unit vectors x1, · · ·, xn of a real Banach space E, we define NA(ℒ(nE))(x1,…xn)={ T∈ℒ(nE):| T(x1,…xn) |=‖ T ‖=1 }, NA\left( {\mathcal{L}\left( {^nE} \right)} \right)\left( {{x_1}, \ldots {x_n}} \right) = \left\{ {T \in \mathcal{L}\left( {^nE} \right):\left| {T\left( {{x_1}, \ldots {x_n}} \right)} \right| = \left\| T \right\| = 1} \right\}, where ℒ(nE) denotes the Banach space of all continuous n-linear forms on E endowed with the norm ||T|| = sup||xk||=1,1≤k≤n |T(x1, . . ., xn)|. In this paper, we classify NA(ℒ(2l12))((x1, x2), (y1, y2)) for unit vectors (x1, x2), (y1, y2)∈ l12, where l12 = ℝ2 with the l1-norm.