一种有效的动植物识别深度学习模型

Trinh Thi Loan, P. T. Anh, Le Viet Nam, Hoang Van Dung
{"title":"一种有效的动植物识别深度学习模型","authors":"Trinh Thi Loan, P. T. Anh, Le Viet Nam, Hoang Van Dung","doi":"10.15625/1813-9663/38/1/16309","DOIUrl":null,"url":null,"abstract":"This paper presents a deep learning model to address the problem of recognition of animals and plants. The context of this work is to make an effort in protection of rare species that are seriously faced to the risk of extinction in Vietnam such as Panthera pardus, Dalbergia cochinchinensis, Macaca mulatta. The proposed approach exploits the advanced learning ability of convolutional neural networks and Inception residual structures to design a lightweight model for classification task. We also apply the transfer learning technique to fine-tune the two state-of-the-art methods, MobileNetV2 and InceptionV3, specific to our own dataset. Experimental results demonstrate the superiority of our object predictor (e.g., 95.8% accuracy) in comparison with other methods. In addition, the proposed model works very efficiently with the inference speed of around 113 FPS on a CPU machine, enabling it for deployment on mobile environment.","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"124 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN EFFECTIVE DEEP LEARNING MODEL FOR RECOGNITION OF ANIMALS AND PLANTS\",\"authors\":\"Trinh Thi Loan, P. T. Anh, Le Viet Nam, Hoang Van Dung\",\"doi\":\"10.15625/1813-9663/38/1/16309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a deep learning model to address the problem of recognition of animals and plants. The context of this work is to make an effort in protection of rare species that are seriously faced to the risk of extinction in Vietnam such as Panthera pardus, Dalbergia cochinchinensis, Macaca mulatta. The proposed approach exploits the advanced learning ability of convolutional neural networks and Inception residual structures to design a lightweight model for classification task. We also apply the transfer learning technique to fine-tune the two state-of-the-art methods, MobileNetV2 and InceptionV3, specific to our own dataset. Experimental results demonstrate the superiority of our object predictor (e.g., 95.8% accuracy) in comparison with other methods. In addition, the proposed model works very efficiently with the inference speed of around 113 FPS on a CPU machine, enabling it for deployment on mobile environment.\",\"PeriodicalId\":15444,\"journal\":{\"name\":\"Journal of Computer Science and Cybernetics\",\"volume\":\"124 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/1813-9663/38/1/16309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/38/1/16309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种解决动植物识别问题的深度学习模型。本研究的背景是为保护越南面临严重灭绝危险的珍稀物种如Panthera pardus、Dalbergia cochinchinensis、Macaca mulatta而努力。该方法利用卷积神经网络和Inception残差结构的高级学习能力,为分类任务设计轻量级模型。我们还应用迁移学习技术来微调两种最先进的方法,MobileNetV2和InceptionV3,具体到我们自己的数据集。实验结果表明,与其他方法相比,我们的目标预测器具有95.8%的准确率。此外,该模型在CPU机器上的推理速度约为113 FPS,非常有效,可以在移动环境下部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AN EFFECTIVE DEEP LEARNING MODEL FOR RECOGNITION OF ANIMALS AND PLANTS
This paper presents a deep learning model to address the problem of recognition of animals and plants. The context of this work is to make an effort in protection of rare species that are seriously faced to the risk of extinction in Vietnam such as Panthera pardus, Dalbergia cochinchinensis, Macaca mulatta. The proposed approach exploits the advanced learning ability of convolutional neural networks and Inception residual structures to design a lightweight model for classification task. We also apply the transfer learning technique to fine-tune the two state-of-the-art methods, MobileNetV2 and InceptionV3, specific to our own dataset. Experimental results demonstrate the superiority of our object predictor (e.g., 95.8% accuracy) in comparison with other methods. In addition, the proposed model works very efficiently with the inference speed of around 113 FPS on a CPU machine, enabling it for deployment on mobile environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信