高最小度1-平面图中匹配的大小问题

Yuanqiu Huang, Zhangdong Ouyang, F. Dong
{"title":"高最小度1-平面图中匹配的大小问题","authors":"Yuanqiu Huang, Zhangdong Ouyang, F. Dong","doi":"10.1137/21m1459952","DOIUrl":null,"url":null,"abstract":"A matching of a graph is a set of edges without common end vertex. A graph is called 1-planar if it admits a drawing in the plane such that each edge is crossed at most once. Recently, Biedl and Wittnebel proved that every 1-planar graph with minimum degree 3 and $n\\geq 7$ vertices has a matching of size at least $\\frac{n+12}{7}$, which is tight for some graphs. They also provided tight lower bounds for the sizes of matchings in 1-planar graphs with minimum degree 4 or 5. In this paper, we show that any 1-planar graph with minimum degree 6 and $n \\geq 36$ vertices has a matching of size at least $\\frac{3n+4}{7}$, and this lower bound is tight. Our result confirms a conjecture posed by Biedl and Wittnebel.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Size of Matchings in 1-Planar Graph with High Minimum Degree\",\"authors\":\"Yuanqiu Huang, Zhangdong Ouyang, F. Dong\",\"doi\":\"10.1137/21m1459952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A matching of a graph is a set of edges without common end vertex. A graph is called 1-planar if it admits a drawing in the plane such that each edge is crossed at most once. Recently, Biedl and Wittnebel proved that every 1-planar graph with minimum degree 3 and $n\\\\geq 7$ vertices has a matching of size at least $\\\\frac{n+12}{7}$, which is tight for some graphs. They also provided tight lower bounds for the sizes of matchings in 1-planar graphs with minimum degree 4 or 5. In this paper, we show that any 1-planar graph with minimum degree 6 and $n \\\\geq 36$ vertices has a matching of size at least $\\\\frac{3n+4}{7}$, and this lower bound is tight. Our result confirms a conjecture posed by Biedl and Wittnebel.\",\"PeriodicalId\":21749,\"journal\":{\"name\":\"SIAM J. Discret. Math.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Discret. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1459952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1459952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图的匹配是一组没有公共端点的边的集合。如果一个图在平面上允许每条边最多相交一次,那么它就被称为1-平面图。最近,Biedl和Wittnebel证明了每一个最小度为3且顶点为$n\geq 7$的1-平面图都有一个大小至少为$\frac{n+12}{7}$的匹配,这对于某些图来说是紧的。它们还提供了最小度为4或5的1-平面图匹配大小的严格下界。在本文中,我们证明了任何最小度为6且顶点为$n \geq 36$的1-平面图的匹配大小至少为$\frac{3n+4}{7}$,并且该下界是紧的。我们的结果证实了Biedl和Wittnebel提出的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Size of Matchings in 1-Planar Graph with High Minimum Degree
A matching of a graph is a set of edges without common end vertex. A graph is called 1-planar if it admits a drawing in the plane such that each edge is crossed at most once. Recently, Biedl and Wittnebel proved that every 1-planar graph with minimum degree 3 and $n\geq 7$ vertices has a matching of size at least $\frac{n+12}{7}$, which is tight for some graphs. They also provided tight lower bounds for the sizes of matchings in 1-planar graphs with minimum degree 4 or 5. In this paper, we show that any 1-planar graph with minimum degree 6 and $n \geq 36$ vertices has a matching of size at least $\frac{3n+4}{7}$, and this lower bound is tight. Our result confirms a conjecture posed by Biedl and Wittnebel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信