快速增长的事前可预测性:一种设计科学方法

IF 7.8 1区 管理学 Q1 BUSINESS
Ari Hyytinen, Petri Rouvinen, Mika Pajarinen, Joosua Virtanen
{"title":"快速增长的事前可预测性:一种设计科学方法","authors":"Ari Hyytinen, Petri Rouvinen, Mika Pajarinen, Joosua Virtanen","doi":"10.1177/10422587221128268","DOIUrl":null,"url":null,"abstract":"We examine how machine learning (ML) predictions of high-growth enterprises (HGEs) help a budget-constrained venture capitalist source investments for a fixed size portfolio. Applying a design science approach, we predict HGEs 3 years ahead and focus on decision (not statistical) errors, using an accuracy measure relevant to the decision-making context. We find that when the ML procedure adheres to the budget constraint and maximizes the accuracy measure, nearly 40% of the HGE predictions are correct. Moreover, ML performs particularly well where it matters in practice—in the upper tail of the distribution of the predicted HGE probabilities. JEL Classification: C53, D22, L25","PeriodicalId":48443,"journal":{"name":"Entrepreneurship Theory and Practice","volume":"114 1","pages":"2465 - 2493"},"PeriodicalIF":7.8000,"publicationDate":"2022-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ex Ante Predictability of Rapid Growth: A Design Science Approach\",\"authors\":\"Ari Hyytinen, Petri Rouvinen, Mika Pajarinen, Joosua Virtanen\",\"doi\":\"10.1177/10422587221128268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine how machine learning (ML) predictions of high-growth enterprises (HGEs) help a budget-constrained venture capitalist source investments for a fixed size portfolio. Applying a design science approach, we predict HGEs 3 years ahead and focus on decision (not statistical) errors, using an accuracy measure relevant to the decision-making context. We find that when the ML procedure adheres to the budget constraint and maximizes the accuracy measure, nearly 40% of the HGE predictions are correct. Moreover, ML performs particularly well where it matters in practice—in the upper tail of the distribution of the predicted HGE probabilities. JEL Classification: C53, D22, L25\",\"PeriodicalId\":48443,\"journal\":{\"name\":\"Entrepreneurship Theory and Practice\",\"volume\":\"114 1\",\"pages\":\"2465 - 2493\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2022-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entrepreneurship Theory and Practice\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1177/10422587221128268\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entrepreneurship Theory and Practice","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/10422587221128268","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了高增长企业(HGEs)的机器学习(ML)预测如何帮助预算有限的风险资本家为固定规模的投资组合寻找投资来源。运用设计科学的方法,我们预测未来3年的HGEs,并使用与决策环境相关的精度测量来关注决策(非统计)错误。我们发现,当机器学习过程遵守预算约束并最大化准确性度量时,近40%的HGE预测是正确的。此外,ML在实践中表现得特别好——在预测的HGE概率分布的上尾。JEL分类:C53, D22, L25
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ex Ante Predictability of Rapid Growth: A Design Science Approach
We examine how machine learning (ML) predictions of high-growth enterprises (HGEs) help a budget-constrained venture capitalist source investments for a fixed size portfolio. Applying a design science approach, we predict HGEs 3 years ahead and focus on decision (not statistical) errors, using an accuracy measure relevant to the decision-making context. We find that when the ML procedure adheres to the budget constraint and maximizes the accuracy measure, nearly 40% of the HGE predictions are correct. Moreover, ML performs particularly well where it matters in practice—in the upper tail of the distribution of the predicted HGE probabilities. JEL Classification: C53, D22, L25
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
12.40%
发文量
56
期刊介绍: Entrepreneurship Theory and Practice (ETP) is an interdisciplinary scholarly journal dedicated to conceptual and empirical research that advances, tests, or extends theory relating to entrepreneurship in its broadest sense. Article Topics: Topics covered in ETP include, but are not limited to: New Venture Creation, Development, Growth, and Performance Characteristics, Behaviors, and Types of Entrepreneurs Small Business Management Family-Owned Businesses Corporate, Social, and Sustainable Entrepreneurship National and International Studies of Enterprise Creation Research Methods in Entrepreneurship Venture Financing Content: The journal publishes articles that explore these topics through rigorous theoretical development, empirical analysis, and methodological innovation. ETP serves as a platform for advancing our understanding of entrepreneurship and its implications for individuals, organizations, and society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信