{"title":"裂缝和断层明确表示的统一储层和地震模拟","authors":"Z. Han, G. Ren, R. Younis","doi":"10.2118/203979-ms","DOIUrl":null,"url":null,"abstract":"\n In the context of remote sensing, the vast disparity in characteristic scales between seismic deformation (e.g. milliseconds) and transient flow (e.g. hours) allows a \"two-model paradigm\" for geophysics and reservoir simulation. In the context of flow-induced geohazard risk mitigation and micro-seismic data integration, this paradigm breaks down. Under micro-seismic deformation, events occur with high-frequency, and over sustained duration during which the rock-fluid coupling is significant. In risk mitigation scenarios, the onset of seismic deformation is directly tied to quasi-static coupling periods. This work develops an approach to reservoir simulation modeling that allows simultaneous resolution of transient (inertial) poromechanics and multiphase fluid flow in the presence of fracture.\n A mixed discretization scheme combining the extended finite element method (XFEM) and the embedded discrete fracture model (EDFM) is extended using a second-order implicit Newmark time integration scheme for the inertial mechanics. A Lagrange multiplier method is developed to model pressure-dependent contact traction in fractures. The contact constraints are adapted to accommodate fracture opening. Slip-weakening fracture friction models are incorporated. Finally, a time-step controller is proposed to combine local discretization error with contact traction and slip-rate control along the fractures. This strategy allows automatic adaptation to resolve quasi-static, inter-seismic triggering, and co-seismic spontaneous rupture periods within one model. The model is verified to simulate complete induced earthquake sequences, including inter-seismic and dynamic rupture phases. The performance of the adaptive model is illustrated for cases with various set-ups of production and injection periods in a fractured reservoir with explicit fracture representation.","PeriodicalId":11146,"journal":{"name":"Day 1 Tue, October 26, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unified Reservoir And Seismic Simulation With Explicit Representation Of Fractures And Faults\",\"authors\":\"Z. Han, G. Ren, R. Younis\",\"doi\":\"10.2118/203979-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the context of remote sensing, the vast disparity in characteristic scales between seismic deformation (e.g. milliseconds) and transient flow (e.g. hours) allows a \\\"two-model paradigm\\\" for geophysics and reservoir simulation. In the context of flow-induced geohazard risk mitigation and micro-seismic data integration, this paradigm breaks down. Under micro-seismic deformation, events occur with high-frequency, and over sustained duration during which the rock-fluid coupling is significant. In risk mitigation scenarios, the onset of seismic deformation is directly tied to quasi-static coupling periods. This work develops an approach to reservoir simulation modeling that allows simultaneous resolution of transient (inertial) poromechanics and multiphase fluid flow in the presence of fracture.\\n A mixed discretization scheme combining the extended finite element method (XFEM) and the embedded discrete fracture model (EDFM) is extended using a second-order implicit Newmark time integration scheme for the inertial mechanics. A Lagrange multiplier method is developed to model pressure-dependent contact traction in fractures. The contact constraints are adapted to accommodate fracture opening. Slip-weakening fracture friction models are incorporated. Finally, a time-step controller is proposed to combine local discretization error with contact traction and slip-rate control along the fractures. This strategy allows automatic adaptation to resolve quasi-static, inter-seismic triggering, and co-seismic spontaneous rupture periods within one model. The model is verified to simulate complete induced earthquake sequences, including inter-seismic and dynamic rupture phases. The performance of the adaptive model is illustrated for cases with various set-ups of production and injection periods in a fractured reservoir with explicit fracture representation.\",\"PeriodicalId\":11146,\"journal\":{\"name\":\"Day 1 Tue, October 26, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Tue, October 26, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/203979-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, October 26, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/203979-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unified Reservoir And Seismic Simulation With Explicit Representation Of Fractures And Faults
In the context of remote sensing, the vast disparity in characteristic scales between seismic deformation (e.g. milliseconds) and transient flow (e.g. hours) allows a "two-model paradigm" for geophysics and reservoir simulation. In the context of flow-induced geohazard risk mitigation and micro-seismic data integration, this paradigm breaks down. Under micro-seismic deformation, events occur with high-frequency, and over sustained duration during which the rock-fluid coupling is significant. In risk mitigation scenarios, the onset of seismic deformation is directly tied to quasi-static coupling periods. This work develops an approach to reservoir simulation modeling that allows simultaneous resolution of transient (inertial) poromechanics and multiphase fluid flow in the presence of fracture.
A mixed discretization scheme combining the extended finite element method (XFEM) and the embedded discrete fracture model (EDFM) is extended using a second-order implicit Newmark time integration scheme for the inertial mechanics. A Lagrange multiplier method is developed to model pressure-dependent contact traction in fractures. The contact constraints are adapted to accommodate fracture opening. Slip-weakening fracture friction models are incorporated. Finally, a time-step controller is proposed to combine local discretization error with contact traction and slip-rate control along the fractures. This strategy allows automatic adaptation to resolve quasi-static, inter-seismic triggering, and co-seismic spontaneous rupture periods within one model. The model is verified to simulate complete induced earthquake sequences, including inter-seismic and dynamic rupture phases. The performance of the adaptive model is illustrated for cases with various set-ups of production and injection periods in a fractured reservoir with explicit fracture representation.