基于22nm CMOS技术的2.4-5.25GHz Balun-LNA

Zhiqiang Wang, Zhiqun Li, Jiajun Li, Xiaowei Wang, Zhennan Li
{"title":"基于22nm CMOS技术的2.4-5.25GHz Balun-LNA","authors":"Zhiqiang Wang, Zhiqun Li, Jiajun Li, Xiaowei Wang, Zhennan Li","doi":"10.1109/ICICM54364.2021.9660356","DOIUrl":null,"url":null,"abstract":"This paper presents a $2.4\\sim 5.25{\\mathrm {GHz}}$ single to differential low-noise amplifier (balun-LNA) using 22nm CMOS technology. Current-reuse technique is introduced to make a compromise between gain and linearity. A balanced buffer is used to reduce the gain difference and phase difference of the differential outputs. The contradiction between linearity and NF can also be resolved through variable gain control. The post-simulation results show that it achieves a voltage gain of 30. 0dB, an NF of 1. 49dB, the phase mismatch of 0.3°, and the gain mismatch of 0.1 dB in the high-gain mode. The IIP3 is 9. 0dBm, and IP1dB is 3.0 dBm in the low-gain mode. At 1V supply voltage, the power consumption is 1S.43mW, and the layout is 0.63mm2.","PeriodicalId":6693,"journal":{"name":"2021 6th International Conference on Integrated Circuits and Microsystems (ICICM)","volume":"1 1","pages":"197-200"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 2.4-5.25GHz Balun-LNA in 22nm CMOS Technology\",\"authors\":\"Zhiqiang Wang, Zhiqun Li, Jiajun Li, Xiaowei Wang, Zhennan Li\",\"doi\":\"10.1109/ICICM54364.2021.9660356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a $2.4\\\\sim 5.25{\\\\mathrm {GHz}}$ single to differential low-noise amplifier (balun-LNA) using 22nm CMOS technology. Current-reuse technique is introduced to make a compromise between gain and linearity. A balanced buffer is used to reduce the gain difference and phase difference of the differential outputs. The contradiction between linearity and NF can also be resolved through variable gain control. The post-simulation results show that it achieves a voltage gain of 30. 0dB, an NF of 1. 49dB, the phase mismatch of 0.3°, and the gain mismatch of 0.1 dB in the high-gain mode. The IIP3 is 9. 0dBm, and IP1dB is 3.0 dBm in the low-gain mode. At 1V supply voltage, the power consumption is 1S.43mW, and the layout is 0.63mm2.\",\"PeriodicalId\":6693,\"journal\":{\"name\":\"2021 6th International Conference on Integrated Circuits and Microsystems (ICICM)\",\"volume\":\"1 1\",\"pages\":\"197-200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 6th International Conference on Integrated Circuits and Microsystems (ICICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICM54364.2021.9660356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Integrated Circuits and Microsystems (ICICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICM54364.2021.9660356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种采用22nm CMOS技术的$2.4\sim 5.25{\ mathm {GHz}}$单对差分低噪声放大器(balun-LNA)。引入电流复用技术,在增益和线性度之间进行折衷。平衡缓冲器用于减小差分输出的增益差和相位差。通过变增益控制也可以解决线性和NF之间的矛盾。后置仿真结果表明,该电路的电压增益为30。0dB, NF = 1。在高增益模式下,相位失配0.3°,增益失配0.1 dB。IIP3是9。低增益模式下,IP1dB为3.0 dBm。电源电压为1V时,功耗为1S。43mW,布局为0.63mm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 2.4-5.25GHz Balun-LNA in 22nm CMOS Technology
This paper presents a $2.4\sim 5.25{\mathrm {GHz}}$ single to differential low-noise amplifier (balun-LNA) using 22nm CMOS technology. Current-reuse technique is introduced to make a compromise between gain and linearity. A balanced buffer is used to reduce the gain difference and phase difference of the differential outputs. The contradiction between linearity and NF can also be resolved through variable gain control. The post-simulation results show that it achieves a voltage gain of 30. 0dB, an NF of 1. 49dB, the phase mismatch of 0.3°, and the gain mismatch of 0.1 dB in the high-gain mode. The IIP3 is 9. 0dBm, and IP1dB is 3.0 dBm in the low-gain mode. At 1V supply voltage, the power consumption is 1S.43mW, and the layout is 0.63mm2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信