Pell p-数性质的矩阵处理及其推广

IF 0.8 4区 数学 Q2 MATHEMATICS
Özgür Erdağ, Ö. Deveci, A. Shannon
{"title":"Pell p-数性质的矩阵处理及其推广","authors":"Özgür Erdağ, Ö. Deveci, A. Shannon","doi":"10.2478/auom-2020-0036","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we define the Pell-Pell p-sequence and then we discuss the connection of the Pell-Pell p-sequence with Pell and Pell p-sequences. Also, we provide a new Binet formula and a new combinatorial representation of the Pell-Pell p-numbers by the aid of the nth power of the generating matrix the Pell-Pell p-sequence. Furthermore, we obtain an exponential representation of the Pell-Pell p-numbers and we develop relationships between the Pell-Pell p-numbers and their permanent, determinant and sums of certain matrices.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"56 1","pages":"89 - 102"},"PeriodicalIF":0.8000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix Manipulations for Properties of Pell p-Numbers and their Generalizations\",\"authors\":\"Özgür Erdağ, Ö. Deveci, A. Shannon\",\"doi\":\"10.2478/auom-2020-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we define the Pell-Pell p-sequence and then we discuss the connection of the Pell-Pell p-sequence with Pell and Pell p-sequences. Also, we provide a new Binet formula and a new combinatorial representation of the Pell-Pell p-numbers by the aid of the nth power of the generating matrix the Pell-Pell p-sequence. Furthermore, we obtain an exponential representation of the Pell-Pell p-numbers and we develop relationships between the Pell-Pell p-numbers and their permanent, determinant and sums of certain matrices.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"56 1\",\"pages\":\"89 - 102\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0036\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0036","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文首先定义了Pell-Pell p序列,然后讨论了Pell-Pell p序列与Pell和Pell p序列之间的联系。此外,我们还利用生成矩阵的n次幂提供了一个新的Binet公式和一个新的组合表示。进一步,我们得到了Pell-Pell p数的指数表示形式,并发展了Pell-Pell p数与它们的恒量、行列式和之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix Manipulations for Properties of Pell p-Numbers and their Generalizations
Abstract In this paper, we define the Pell-Pell p-sequence and then we discuss the connection of the Pell-Pell p-sequence with Pell and Pell p-sequences. Also, we provide a new Binet formula and a new combinatorial representation of the Pell-Pell p-numbers by the aid of the nth power of the generating matrix the Pell-Pell p-sequence. Furthermore, we obtain an exponential representation of the Pell-Pell p-numbers and we develop relationships between the Pell-Pell p-numbers and their permanent, determinant and sums of certain matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
15
审稿时长
6-12 weeks
期刊介绍: This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信