Fiberwise Kähler-Ricci在有界强伪凸域族上的流动

IF 0.9 3区 数学 Q2 MATHEMATICS
Youngook Choi, Sungmin Yoo
{"title":"Fiberwise Kähler-Ricci在有界强伪凸域族上的流动","authors":"Youngook Choi, Sungmin Yoo","doi":"10.4171/dm/886","DOIUrl":null,"url":null,"abstract":"Let $\\pi:\\mathbb{C}^n\\times\\mathbb{C}\\rightarrow\\mathbb{C}$ be the projection map onto the second factor and let $D$ be a domain in $\\mathbb{C}^{n+1}$ such that for $y\\in\\pi(D)$, every fiber $D_y:=D\\cap\\pi^{-1}(y)$ is a smoothly bounded strongly pseudoconvex domain in $\\mathbb{C}^n$ and is diffeomorphic to each other. By Chau's theorem, the Kahler-Ricci flow has a long time solution $\\omega_y(t)$ on each fiber $D_y$. This family of flows induces a smooth real (1,1)-form $\\omega(t)$ on the total space $D$ whose restriction to the fiber $D_y$ satisfies $\\omega(t)\\vert_{D_y}=\\omega_y(t)$. In this paper, we prove that $\\omega(t)$ is positive for all $t>0$ in $D$ if $\\omega(0)$ is positive. As a corollary, we also prove that the fiberwise Kahler-Einstein metric is positive semi-definite on $D$ if $D$ is pseudoconvex in $\\mathbb{C}^{n+1}$.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"35 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fiberwise Kähler-Ricci flows on families of bounded strongly pseudoconvex domains\",\"authors\":\"Youngook Choi, Sungmin Yoo\",\"doi\":\"10.4171/dm/886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\pi:\\\\mathbb{C}^n\\\\times\\\\mathbb{C}\\\\rightarrow\\\\mathbb{C}$ be the projection map onto the second factor and let $D$ be a domain in $\\\\mathbb{C}^{n+1}$ such that for $y\\\\in\\\\pi(D)$, every fiber $D_y:=D\\\\cap\\\\pi^{-1}(y)$ is a smoothly bounded strongly pseudoconvex domain in $\\\\mathbb{C}^n$ and is diffeomorphic to each other. By Chau's theorem, the Kahler-Ricci flow has a long time solution $\\\\omega_y(t)$ on each fiber $D_y$. This family of flows induces a smooth real (1,1)-form $\\\\omega(t)$ on the total space $D$ whose restriction to the fiber $D_y$ satisfies $\\\\omega(t)\\\\vert_{D_y}=\\\\omega_y(t)$. In this paper, we prove that $\\\\omega(t)$ is positive for all $t>0$ in $D$ if $\\\\omega(0)$ is positive. As a corollary, we also prove that the fiberwise Kahler-Einstein metric is positive semi-definite on $D$ if $D$ is pseudoconvex in $\\\\mathbb{C}^{n+1}$.\",\"PeriodicalId\":50567,\"journal\":{\"name\":\"Documenta Mathematica\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Documenta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/dm/886\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/dm/886","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设$\pi:\mathbb{C}^n\times\mathbb{C}\rightarrow\mathbb{C}$为第二个因子的投影映射,设$D$为$\mathbb{C}^{n+1}$中的一个域,使得对于$y\in\pi(D)$,每个纤维$D_y:=D\cap\pi^{-1}(y)$都是$\mathbb{C}^n$中的光滑有界强伪凸域,并且彼此是微分同构的。根据Chau的定理,Kahler-Ricci流在每根纤维$D_y$上都有一个长时间解$\omega_y(t)$。该流族在总空间$D$上推导出光滑的实(1,1)形式$\omega(t)$,其对光纤$D_y$的限制满足$\omega(t)\vert_{D_y}=\omega_y(t)$。在本文中,我们证明了如果$\omega(0)$是正的,那么$\omega(t)$对$D$中的所有$t>0$都是正的。作为推论,我们也证明了如果$D$在$\mathbb{C}^{n+1}$上是假凸的,那么在$D$上沿纤维方向的Kahler-Einstein度规是正半定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fiberwise Kähler-Ricci flows on families of bounded strongly pseudoconvex domains
Let $\pi:\mathbb{C}^n\times\mathbb{C}\rightarrow\mathbb{C}$ be the projection map onto the second factor and let $D$ be a domain in $\mathbb{C}^{n+1}$ such that for $y\in\pi(D)$, every fiber $D_y:=D\cap\pi^{-1}(y)$ is a smoothly bounded strongly pseudoconvex domain in $\mathbb{C}^n$ and is diffeomorphic to each other. By Chau's theorem, the Kahler-Ricci flow has a long time solution $\omega_y(t)$ on each fiber $D_y$. This family of flows induces a smooth real (1,1)-form $\omega(t)$ on the total space $D$ whose restriction to the fiber $D_y$ satisfies $\omega(t)\vert_{D_y}=\omega_y(t)$. In this paper, we prove that $\omega(t)$ is positive for all $t>0$ in $D$ if $\omega(0)$ is positive. As a corollary, we also prove that the fiberwise Kahler-Einstein metric is positive semi-definite on $D$ if $D$ is pseudoconvex in $\mathbb{C}^{n+1}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Documenta Mathematica
Documenta Mathematica 数学-数学
CiteScore
1.60
自引率
11.10%
发文量
0
审稿时长
>12 weeks
期刊介绍: DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信