考虑混沌的踢顶模型的统计复杂性

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
Á. Fülöp
{"title":"考虑混沌的踢顶模型的统计复杂性","authors":"Á. Fülöp","doi":"10.2478/ausi-2020-0017","DOIUrl":null,"url":null,"abstract":"Abstract The concept of the statistical complexity is studied to characterize the classical kicked top model which plays important role in the qbit systems and the chaotic properties of the entanglement. This allow us to understand this driven dynamical system by the probability distribution in phase space to make distinguish among the regular, random and structural complexity on finite simulation. We present the dependence of the kicked top and kicked rotor model through the strength excitation in the framework of statistical complexity.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"25 1","pages":"283 - 301"},"PeriodicalIF":0.3000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical complexity of the kicked top model considering chaos\",\"authors\":\"Á. Fülöp\",\"doi\":\"10.2478/ausi-2020-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The concept of the statistical complexity is studied to characterize the classical kicked top model which plays important role in the qbit systems and the chaotic properties of the entanglement. This allow us to understand this driven dynamical system by the probability distribution in phase space to make distinguish among the regular, random and structural complexity on finite simulation. We present the dependence of the kicked top and kicked rotor model through the strength excitation in the framework of statistical complexity.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"25 1\",\"pages\":\"283 - 301\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2020-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2020-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了统计复杂度的概念,以表征量子比特系统中起重要作用的经典踢顶模型和纠缠的混沌特性。这使得我们可以通过相空间的概率分布来理解驱动动力系统,从而在有限模拟中区分出规则、随机和结构的复杂性。在统计复杂度的框架下,通过强度激励给出了被踢顶模型与被踢转子模型的依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical complexity of the kicked top model considering chaos
Abstract The concept of the statistical complexity is studied to characterize the classical kicked top model which plays important role in the qbit systems and the chaotic properties of the entanglement. This allow us to understand this driven dynamical system by the probability distribution in phase space to make distinguish among the regular, random and structural complexity on finite simulation. We present the dependence of the kicked top and kicked rotor model through the strength excitation in the framework of statistical complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信