{"title":"4.8 MHz多电平GaN逆变交流电源的高带宽高cmrr电流测量","authors":"P. Niklaus, D. Bortis, J. Kolar","doi":"10.1109/APEC42165.2021.9487044","DOIUrl":null,"url":null,"abstract":"The control of very high switching frequency power electronic converter systems featuring latest generation wide bandgap (WBG) devices requires current measurements with a very high bandwidth (BW) to achieve high closed-loop control dynamics. One example is a ultra-high BW 4.8 MHz parallel-interleaved multi-level GaN inverter AC power source with a target output BW of 100 kHz. This work investigates the combination of state-of-the-art Hall-effect current sensors with a suitable high-frequency (HF) sensor to extend the BW of the commercially available current sensor by a factor of 20 – 50, i.e., up to 10 − 20 MHz. The main focus lies on a small form factor and a low realization effort. HF current sensors based on a Rogowski coil, an inductor integrated voltage sensing and a current transformer (CT) are analyzed and compared. Additionally, their respective performance limitations are highlighted. Furthermore, a precise combiner network to combine the low-frequency (LF) and HF signal is analyzed. The combiner circuit is designed in a way that component tolerances have no influence on the behavior in the transition frequency range from LF to HF. Thereby, also the immunity to Common-Mode (CM) disturbances, i.e., the high dv/dt occurring for the switching transitions of WBG semiconductors is considered. Finally, a hardware demonstrator featuring the two most promising current sensor approaches, i.e., the inductor voltage sensing and the CT, is presented and verified with comprehensive measurements in frequency and time domain. A BW from DC up to 35 MHz is measured. The realized sensors are further tested with a hardware prototype of the aforementioned AC power source switching 600 V at an effective switching frequency of 1.6 MHz. The measurements clearly reveal that both proposed sensor concepts are well suited for accurate measurements in fast switching converter systems with negligible additional volume.","PeriodicalId":7050,"journal":{"name":"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"34 1","pages":"200-207"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"High-Bandwidth High-CMRR Current Measurement for a 4.8 MHz Multi-Level GaN Inverter AC Power Source\",\"authors\":\"P. Niklaus, D. Bortis, J. Kolar\",\"doi\":\"10.1109/APEC42165.2021.9487044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The control of very high switching frequency power electronic converter systems featuring latest generation wide bandgap (WBG) devices requires current measurements with a very high bandwidth (BW) to achieve high closed-loop control dynamics. One example is a ultra-high BW 4.8 MHz parallel-interleaved multi-level GaN inverter AC power source with a target output BW of 100 kHz. This work investigates the combination of state-of-the-art Hall-effect current sensors with a suitable high-frequency (HF) sensor to extend the BW of the commercially available current sensor by a factor of 20 – 50, i.e., up to 10 − 20 MHz. The main focus lies on a small form factor and a low realization effort. HF current sensors based on a Rogowski coil, an inductor integrated voltage sensing and a current transformer (CT) are analyzed and compared. Additionally, their respective performance limitations are highlighted. Furthermore, a precise combiner network to combine the low-frequency (LF) and HF signal is analyzed. The combiner circuit is designed in a way that component tolerances have no influence on the behavior in the transition frequency range from LF to HF. Thereby, also the immunity to Common-Mode (CM) disturbances, i.e., the high dv/dt occurring for the switching transitions of WBG semiconductors is considered. Finally, a hardware demonstrator featuring the two most promising current sensor approaches, i.e., the inductor voltage sensing and the CT, is presented and verified with comprehensive measurements in frequency and time domain. A BW from DC up to 35 MHz is measured. The realized sensors are further tested with a hardware prototype of the aforementioned AC power source switching 600 V at an effective switching frequency of 1.6 MHz. The measurements clearly reveal that both proposed sensor concepts are well suited for accurate measurements in fast switching converter systems with negligible additional volume.\",\"PeriodicalId\":7050,\"journal\":{\"name\":\"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"34 1\",\"pages\":\"200-207\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC42165.2021.9487044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC42165.2021.9487044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Bandwidth High-CMRR Current Measurement for a 4.8 MHz Multi-Level GaN Inverter AC Power Source
The control of very high switching frequency power electronic converter systems featuring latest generation wide bandgap (WBG) devices requires current measurements with a very high bandwidth (BW) to achieve high closed-loop control dynamics. One example is a ultra-high BW 4.8 MHz parallel-interleaved multi-level GaN inverter AC power source with a target output BW of 100 kHz. This work investigates the combination of state-of-the-art Hall-effect current sensors with a suitable high-frequency (HF) sensor to extend the BW of the commercially available current sensor by a factor of 20 – 50, i.e., up to 10 − 20 MHz. The main focus lies on a small form factor and a low realization effort. HF current sensors based on a Rogowski coil, an inductor integrated voltage sensing and a current transformer (CT) are analyzed and compared. Additionally, their respective performance limitations are highlighted. Furthermore, a precise combiner network to combine the low-frequency (LF) and HF signal is analyzed. The combiner circuit is designed in a way that component tolerances have no influence on the behavior in the transition frequency range from LF to HF. Thereby, also the immunity to Common-Mode (CM) disturbances, i.e., the high dv/dt occurring for the switching transitions of WBG semiconductors is considered. Finally, a hardware demonstrator featuring the two most promising current sensor approaches, i.e., the inductor voltage sensing and the CT, is presented and verified with comprehensive measurements in frequency and time domain. A BW from DC up to 35 MHz is measured. The realized sensors are further tested with a hardware prototype of the aforementioned AC power source switching 600 V at an effective switching frequency of 1.6 MHz. The measurements clearly reveal that both proposed sensor concepts are well suited for accurate measurements in fast switching converter systems with negligible additional volume.