Y. B. Soumane, A. Baouid, E. Hadrami, R. Idouhli, L. E. Ammari, Abdeslam Ben Tama, M. Maatallah, M. Berraho, M. Saadi
{"title":"吡唑啉衍生物的合成、表征、理论及电化学研究","authors":"Y. B. Soumane, A. Baouid, E. Hadrami, R. Idouhli, L. E. Ammari, Abdeslam Ben Tama, M. Maatallah, M. Berraho, M. Saadi","doi":"10.13171/mjc10902011121522ybs","DOIUrl":null,"url":null,"abstract":"The reaction of 1,3-dipolar cycloaddition of trans-anethole and three different diarylnitrilimines bearing different substituents X= {H, CH3, Cl} yield to the creation of three 1,3,4,5-tetrasubstituted pyrazoles. These reactions produce a single regioisomer. These compounds' structures were studied using diverse spectroscopic techniques such as 1H, 13C NMR, and HRMS. Afterwards, X-ray diffraction is performed at 5-(4-methoxyphenyl)-4-methyl-1,3-diphenyl-4,5-dihydro-1H-pyrazole. Also, Density Functional Theory (DFT) is performed to characterize these cycloadducts.Moreover, these synthesized compounds' molecular geometry and electronic structures have been studied using high-level ab initio calculations and DFT using the B3LYP functional. All geometries have been optimized at the B3LYP/6-311+G(d,p) basis set with different kinds of solvents. In the end, the protection against corrosion of copper surface is tested using these pyrazolines. As a result, the experimental analysis proved that the obtained cycloadducts belong to the pyrazoline family. Also, X-ray diffraction determined the stereochemistry of these compounds. DFT-based calculations revealed the existence of three stable conformations of each compound. The theoretical study and the experimental spectroscopic data showed perfect matching. The electrochemical investigation indicates that these pyrazoline compounds exhibit a good inhibition performance, preventing the degradation of copper in NaCl (3%) solution with a high inhibition efficiency of 80%.","PeriodicalId":18513,"journal":{"name":"Mediterranean Journal of Chemistry","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis, Characterization, Theoretical and Electrochemical Studies of Pyrazoline Derivatives\",\"authors\":\"Y. B. Soumane, A. Baouid, E. Hadrami, R. Idouhli, L. E. Ammari, Abdeslam Ben Tama, M. Maatallah, M. Berraho, M. Saadi\",\"doi\":\"10.13171/mjc10902011121522ybs\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reaction of 1,3-dipolar cycloaddition of trans-anethole and three different diarylnitrilimines bearing different substituents X= {H, CH3, Cl} yield to the creation of three 1,3,4,5-tetrasubstituted pyrazoles. These reactions produce a single regioisomer. These compounds' structures were studied using diverse spectroscopic techniques such as 1H, 13C NMR, and HRMS. Afterwards, X-ray diffraction is performed at 5-(4-methoxyphenyl)-4-methyl-1,3-diphenyl-4,5-dihydro-1H-pyrazole. Also, Density Functional Theory (DFT) is performed to characterize these cycloadducts.Moreover, these synthesized compounds' molecular geometry and electronic structures have been studied using high-level ab initio calculations and DFT using the B3LYP functional. All geometries have been optimized at the B3LYP/6-311+G(d,p) basis set with different kinds of solvents. In the end, the protection against corrosion of copper surface is tested using these pyrazolines. As a result, the experimental analysis proved that the obtained cycloadducts belong to the pyrazoline family. Also, X-ray diffraction determined the stereochemistry of these compounds. DFT-based calculations revealed the existence of three stable conformations of each compound. The theoretical study and the experimental spectroscopic data showed perfect matching. The electrochemical investigation indicates that these pyrazoline compounds exhibit a good inhibition performance, preventing the degradation of copper in NaCl (3%) solution with a high inhibition efficiency of 80%.\",\"PeriodicalId\":18513,\"journal\":{\"name\":\"Mediterranean Journal of Chemistry\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mediterranean Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13171/mjc10902011121522ybs\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mediterranean Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13171/mjc10902011121522ybs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis, Characterization, Theoretical and Electrochemical Studies of Pyrazoline Derivatives
The reaction of 1,3-dipolar cycloaddition of trans-anethole and three different diarylnitrilimines bearing different substituents X= {H, CH3, Cl} yield to the creation of three 1,3,4,5-tetrasubstituted pyrazoles. These reactions produce a single regioisomer. These compounds' structures were studied using diverse spectroscopic techniques such as 1H, 13C NMR, and HRMS. Afterwards, X-ray diffraction is performed at 5-(4-methoxyphenyl)-4-methyl-1,3-diphenyl-4,5-dihydro-1H-pyrazole. Also, Density Functional Theory (DFT) is performed to characterize these cycloadducts.Moreover, these synthesized compounds' molecular geometry and electronic structures have been studied using high-level ab initio calculations and DFT using the B3LYP functional. All geometries have been optimized at the B3LYP/6-311+G(d,p) basis set with different kinds of solvents. In the end, the protection against corrosion of copper surface is tested using these pyrazolines. As a result, the experimental analysis proved that the obtained cycloadducts belong to the pyrazoline family. Also, X-ray diffraction determined the stereochemistry of these compounds. DFT-based calculations revealed the existence of three stable conformations of each compound. The theoretical study and the experimental spectroscopic data showed perfect matching. The electrochemical investigation indicates that these pyrazoline compounds exhibit a good inhibition performance, preventing the degradation of copper in NaCl (3%) solution with a high inhibition efficiency of 80%.