{"title":"包括量子干涉的扩展虚探测器理论","authors":"R. Xu, Xu Wang","doi":"10.1063/5.0040193","DOIUrl":null,"url":null,"abstract":"We extend our earlier \"virtual detector\" method [X. Wang, J. Tian, and J. H. Eberly, Phys. Rev. Lett. 110, 243001 (2013)], a hybrid quantum mechanical and classical trajectory method, to include phases in the classical trajectories. Effects of quantum interferences, lost in the earlier method, are restored. The obtained photoelectron momentum distributions agree well with the corresponding numerical solutions of the time-dependent Schr\\\"odinger equation.","PeriodicalId":8441,"journal":{"name":"arXiv: Atomic Physics","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Extended virtual detector theory including quantum interferences\",\"authors\":\"R. Xu, Xu Wang\",\"doi\":\"10.1063/5.0040193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend our earlier \\\"virtual detector\\\" method [X. Wang, J. Tian, and J. H. Eberly, Phys. Rev. Lett. 110, 243001 (2013)], a hybrid quantum mechanical and classical trajectory method, to include phases in the classical trajectories. Effects of quantum interferences, lost in the earlier method, are restored. The obtained photoelectron momentum distributions agree well with the corresponding numerical solutions of the time-dependent Schr\\\\\\\"odinger equation.\",\"PeriodicalId\":8441,\"journal\":{\"name\":\"arXiv: Atomic Physics\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Atomic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0040193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0040193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
我们扩展了之前的“虚拟探测器”方法[X]。Wang, J. Tian,和J. H. Eberly, Phys。[j],一种混合量子力学和经典轨迹方法,以包括经典轨迹中的相。在先前的方法中丢失的量子干涉效应得以恢复。得到的光电子动量分布与时变Schr\ odinger方程的数值解吻合较好。
Extended virtual detector theory including quantum interferences
We extend our earlier "virtual detector" method [X. Wang, J. Tian, and J. H. Eberly, Phys. Rev. Lett. 110, 243001 (2013)], a hybrid quantum mechanical and classical trajectory method, to include phases in the classical trajectories. Effects of quantum interferences, lost in the earlier method, are restored. The obtained photoelectron momentum distributions agree well with the corresponding numerical solutions of the time-dependent Schr\"odinger equation.