预测多重结构视觉解释

Debadeepta Dey, V. Ramakrishna, M. Hebert, J. Bagnell
{"title":"预测多重结构视觉解释","authors":"Debadeepta Dey, V. Ramakrishna, M. Hebert, J. Bagnell","doi":"10.1109/ICCV.2015.337","DOIUrl":null,"url":null,"abstract":"We present a simple approach for producing a small number of structured visual outputs which have high recall, for a variety of tasks including monocular pose estimation and semantic scene segmentation. Current state-of-the-art approaches learn a single model and modify inference procedures to produce a small number of diverse predictions. We take the alternate route of modifying the learning procedure to directly optimize for good, high recall sequences of structured-output predictors. Our approach introduces no new parameters, naturally learns diverse predictions and is not tied to any specific structured learning or inference procedure. We leverage recent advances in the contextual submodular maximization literature to learn a sequence of predictors and empirically demonstrate the simplicity and performance of our approach on multiple challenging vision tasks including achieving state-of-the-art results on multiple predictions for monocular pose-estimation and image foreground/background segmentation.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"33 1","pages":"2947-2955"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Predicting Multiple Structured Visual Interpretations\",\"authors\":\"Debadeepta Dey, V. Ramakrishna, M. Hebert, J. Bagnell\",\"doi\":\"10.1109/ICCV.2015.337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a simple approach for producing a small number of structured visual outputs which have high recall, for a variety of tasks including monocular pose estimation and semantic scene segmentation. Current state-of-the-art approaches learn a single model and modify inference procedures to produce a small number of diverse predictions. We take the alternate route of modifying the learning procedure to directly optimize for good, high recall sequences of structured-output predictors. Our approach introduces no new parameters, naturally learns diverse predictions and is not tied to any specific structured learning or inference procedure. We leverage recent advances in the contextual submodular maximization literature to learn a sequence of predictors and empirically demonstrate the simplicity and performance of our approach on multiple challenging vision tasks including achieving state-of-the-art results on multiple predictions for monocular pose-estimation and image foreground/background segmentation.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"33 1\",\"pages\":\"2947-2955\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

我们提出了一种简单的方法来产生少量具有高召回率的结构化视觉输出,用于各种任务,包括单目姿态估计和语义场景分割。目前最先进的方法学习单一模型并修改推理程序以产生少量不同的预测。我们采用修改学习过程的替代路线,直接优化结构化输出预测器的良好,高召回序列。我们的方法没有引入新的参数,自然地学习不同的预测,并且不依赖于任何特定的结构化学习或推理过程。我们利用上下文子模块最大化文献的最新进展来学习一系列预测因子,并通过经验证明我们的方法在多个具有挑战性的视觉任务上的简单性和性能,包括在单眼姿态估计和图像前景/背景分割的多个预测上取得最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Multiple Structured Visual Interpretations
We present a simple approach for producing a small number of structured visual outputs which have high recall, for a variety of tasks including monocular pose estimation and semantic scene segmentation. Current state-of-the-art approaches learn a single model and modify inference procedures to produce a small number of diverse predictions. We take the alternate route of modifying the learning procedure to directly optimize for good, high recall sequences of structured-output predictors. Our approach introduces no new parameters, naturally learns diverse predictions and is not tied to any specific structured learning or inference procedure. We leverage recent advances in the contextual submodular maximization literature to learn a sequence of predictors and empirically demonstrate the simplicity and performance of our approach on multiple challenging vision tasks including achieving state-of-the-art results on multiple predictions for monocular pose-estimation and image foreground/background segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信