硫对大豆根系柠檬酸转运体基因表达的诱导作用

IF 1.9 4区 农林科学 Q3 ENVIRONMENTAL SCIENCES
Hinako Sugiura, Shunsuke Miyaji, Saki Yamamoto, M. Yasuda, Jean Louise Cocson Damo, María Daniela Artigas Ramírez, Shin-ichiro Agake, Takehiro Kamiya, T. Fujiwara, S. Bellingrath-Kimura, Haruo Tanaka, S. Sugihara, Naoko Ohkama‐Ohtsu
{"title":"硫对大豆根系柠檬酸转运体基因表达的诱导作用","authors":"Hinako Sugiura, Shunsuke Miyaji, Saki Yamamoto, M. Yasuda, Jean Louise Cocson Damo, María Daniela Artigas Ramírez, Shin-ichiro Agake, Takehiro Kamiya, T. Fujiwara, S. Bellingrath-Kimura, Haruo Tanaka, S. Sugihara, Naoko Ohkama‐Ohtsu","doi":"10.1080/00380768.2022.2104594","DOIUrl":null,"url":null,"abstract":"ABSTRACT Organic acid secretion from the roots enables plants to acquire phosphorus (P) which is poorly soluble in soil. We previously reported that when soybeans were cultivated in vermiculite in the presence of insoluble calcium phosphate, as a phosphorus source, sulfur (S) fertilization increased organic acid secretion from the roots and improved P acquisition in soybeans. In the present study, we confirmed that S fertilization increased secretion of organic acids such as citric acid when soybeans were cultivated in Andosols having a strong P fixation capacity. In contrast, concentration of citric acid in soybean roots did not increase by S fertilization. Therefore, the relationship between S nutrition and gene expression of citric acid exporters was investigated to understand the mechanisms of induction of citric acid secretion by S. Further, we verified whether the expression of citric acid transporter genes, GmMATE13 and GmMATE47, is involved in the induction of citric acid secretion from the roots by S fertilization. The expression level of GmMATE13 in roots was significantly increased by S fertilization compared to that without S fertilization. Therefore, our results suggest that S nutrition is involved in inducing GmMATE13 expression and contributes to the excretion of citric acid from the soybean roots.","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Induction of citrate transporter gene expression in soybean roots by sulfur application\",\"authors\":\"Hinako Sugiura, Shunsuke Miyaji, Saki Yamamoto, M. Yasuda, Jean Louise Cocson Damo, María Daniela Artigas Ramírez, Shin-ichiro Agake, Takehiro Kamiya, T. Fujiwara, S. Bellingrath-Kimura, Haruo Tanaka, S. Sugihara, Naoko Ohkama‐Ohtsu\",\"doi\":\"10.1080/00380768.2022.2104594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Organic acid secretion from the roots enables plants to acquire phosphorus (P) which is poorly soluble in soil. We previously reported that when soybeans were cultivated in vermiculite in the presence of insoluble calcium phosphate, as a phosphorus source, sulfur (S) fertilization increased organic acid secretion from the roots and improved P acquisition in soybeans. In the present study, we confirmed that S fertilization increased secretion of organic acids such as citric acid when soybeans were cultivated in Andosols having a strong P fixation capacity. In contrast, concentration of citric acid in soybean roots did not increase by S fertilization. Therefore, the relationship between S nutrition and gene expression of citric acid exporters was investigated to understand the mechanisms of induction of citric acid secretion by S. Further, we verified whether the expression of citric acid transporter genes, GmMATE13 and GmMATE47, is involved in the induction of citric acid secretion from the roots by S fertilization. The expression level of GmMATE13 in roots was significantly increased by S fertilization compared to that without S fertilization. Therefore, our results suggest that S nutrition is involved in inducing GmMATE13 expression and contributes to the excretion of citric acid from the soybean roots.\",\"PeriodicalId\":21852,\"journal\":{\"name\":\"Soil Science and Plant Nutrition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Science and Plant Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/00380768.2022.2104594\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/00380768.2022.2104594","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

根系分泌有机酸使植物获得土壤中难溶的磷(P)。我们以前报道过,当大豆在不溶性磷酸钙存在的蛭石中栽培时,作为磷源,硫(S)施肥增加了大豆根部的有机酸分泌,改善了大豆的磷获取。本研究证实,在固磷能力强的土中栽培大豆,施S能增加柠檬酸等有机酸的分泌。施硫后,大豆根系中柠檬酸浓度没有增加。因此,研究S营养与柠檬酸出口植株基因表达之间的关系,了解S诱导柠檬酸分泌的机制。进一步验证S施肥诱导根部分泌柠檬酸的过程中是否参与了柠檬酸转运基因GmMATE13和GmMATE47的表达。施硫处理显著提高了根中GmMATE13的表达量。因此,我们的研究结果表明,S营养参与诱导GmMATE13的表达,并有助于从大豆根部排出柠檬酸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Induction of citrate transporter gene expression in soybean roots by sulfur application
ABSTRACT Organic acid secretion from the roots enables plants to acquire phosphorus (P) which is poorly soluble in soil. We previously reported that when soybeans were cultivated in vermiculite in the presence of insoluble calcium phosphate, as a phosphorus source, sulfur (S) fertilization increased organic acid secretion from the roots and improved P acquisition in soybeans. In the present study, we confirmed that S fertilization increased secretion of organic acids such as citric acid when soybeans were cultivated in Andosols having a strong P fixation capacity. In contrast, concentration of citric acid in soybean roots did not increase by S fertilization. Therefore, the relationship between S nutrition and gene expression of citric acid exporters was investigated to understand the mechanisms of induction of citric acid secretion by S. Further, we verified whether the expression of citric acid transporter genes, GmMATE13 and GmMATE47, is involved in the induction of citric acid secretion from the roots by S fertilization. The expression level of GmMATE13 in roots was significantly increased by S fertilization compared to that without S fertilization. Therefore, our results suggest that S nutrition is involved in inducing GmMATE13 expression and contributes to the excretion of citric acid from the soybean roots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil Science and Plant Nutrition
Soil Science and Plant Nutrition 农林科学-农艺学
CiteScore
4.80
自引率
15.00%
发文量
56
审稿时长
18-36 weeks
期刊介绍: Soil Science and Plant Nutrition is the official English journal of the Japanese Society of Soil Science and Plant Nutrition (JSSSPN), and publishes original research and reviews in soil physics, chemistry and mineralogy; soil biology; plant nutrition; soil genesis, classification and survey; soil fertility; fertilizers and soil amendments; environment; socio cultural soil science. The Journal publishes full length papers, short papers, and reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信