Can Basaran, Hee-Jung Yoon, Ho-Kyeong Ra, S. Son, Taejoon Park, Jeonggil Ko
{"title":"使用3D深度相机对儿童进行分类,以实现儿童安全应用","authors":"Can Basaran, Hee-Jung Yoon, Ho-Kyeong Ra, S. Son, Taejoon Park, Jeonggil Ko","doi":"10.1145/2632048.2636074","DOIUrl":null,"url":null,"abstract":"In this work, we present ChildSafe, a classification system which exploits human skeletal features collected using a 3D depth camera to classify visual characteristics between children and adults. ChildSafe analyzes the histograms of training samples and implements a bin-boundary-based classifier. We train and evaluate ChildSafe using a large dataset of visual samples collected from 150 elementary school children and 43 adults, ranging in the ages of 7 and 50. Our results suggest that ChildSafe successfully detects children with a proper classification rate of up to 97%, a false negative rate of as low as 1.82%, and a low false positive rate of 1.46%. We envision this work as an effective sub-system for designing various child protection applications.","PeriodicalId":20496,"journal":{"name":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Classifying children with 3D depth cameras for enabling children's safety applications\",\"authors\":\"Can Basaran, Hee-Jung Yoon, Ho-Kyeong Ra, S. Son, Taejoon Park, Jeonggil Ko\",\"doi\":\"10.1145/2632048.2636074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present ChildSafe, a classification system which exploits human skeletal features collected using a 3D depth camera to classify visual characteristics between children and adults. ChildSafe analyzes the histograms of training samples and implements a bin-boundary-based classifier. We train and evaluate ChildSafe using a large dataset of visual samples collected from 150 elementary school children and 43 adults, ranging in the ages of 7 and 50. Our results suggest that ChildSafe successfully detects children with a proper classification rate of up to 97%, a false negative rate of as low as 1.82%, and a low false positive rate of 1.46%. We envision this work as an effective sub-system for designing various child protection applications.\",\"PeriodicalId\":20496,\"journal\":{\"name\":\"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2632048.2636074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2632048.2636074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classifying children with 3D depth cameras for enabling children's safety applications
In this work, we present ChildSafe, a classification system which exploits human skeletal features collected using a 3D depth camera to classify visual characteristics between children and adults. ChildSafe analyzes the histograms of training samples and implements a bin-boundary-based classifier. We train and evaluate ChildSafe using a large dataset of visual samples collected from 150 elementary school children and 43 adults, ranging in the ages of 7 and 50. Our results suggest that ChildSafe successfully detects children with a proper classification rate of up to 97%, a false negative rate of as low as 1.82%, and a low false positive rate of 1.46%. We envision this work as an effective sub-system for designing various child protection applications.