使用3D深度相机对儿童进行分类,以实现儿童安全应用

Can Basaran, Hee-Jung Yoon, Ho-Kyeong Ra, S. Son, Taejoon Park, Jeonggil Ko
{"title":"使用3D深度相机对儿童进行分类,以实现儿童安全应用","authors":"Can Basaran, Hee-Jung Yoon, Ho-Kyeong Ra, S. Son, Taejoon Park, Jeonggil Ko","doi":"10.1145/2632048.2636074","DOIUrl":null,"url":null,"abstract":"In this work, we present ChildSafe, a classification system which exploits human skeletal features collected using a 3D depth camera to classify visual characteristics between children and adults. ChildSafe analyzes the histograms of training samples and implements a bin-boundary-based classifier. We train and evaluate ChildSafe using a large dataset of visual samples collected from 150 elementary school children and 43 adults, ranging in the ages of 7 and 50. Our results suggest that ChildSafe successfully detects children with a proper classification rate of up to 97%, a false negative rate of as low as 1.82%, and a low false positive rate of 1.46%. We envision this work as an effective sub-system for designing various child protection applications.","PeriodicalId":20496,"journal":{"name":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Classifying children with 3D depth cameras for enabling children's safety applications\",\"authors\":\"Can Basaran, Hee-Jung Yoon, Ho-Kyeong Ra, S. Son, Taejoon Park, Jeonggil Ko\",\"doi\":\"10.1145/2632048.2636074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present ChildSafe, a classification system which exploits human skeletal features collected using a 3D depth camera to classify visual characteristics between children and adults. ChildSafe analyzes the histograms of training samples and implements a bin-boundary-based classifier. We train and evaluate ChildSafe using a large dataset of visual samples collected from 150 elementary school children and 43 adults, ranging in the ages of 7 and 50. Our results suggest that ChildSafe successfully detects children with a proper classification rate of up to 97%, a false negative rate of as low as 1.82%, and a low false positive rate of 1.46%. We envision this work as an effective sub-system for designing various child protection applications.\",\"PeriodicalId\":20496,\"journal\":{\"name\":\"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2632048.2636074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2632048.2636074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在这项工作中,我们提出了ChildSafe,这是一个分类系统,利用3D深度相机收集的人类骨骼特征来对儿童和成人之间的视觉特征进行分类。ChildSafe分析了训练样本的直方图,并实现了基于bin边界的分类器。我们使用从7岁到50岁的150名小学生和43名成年人中收集的视觉样本的大型数据集来训练和评估ChildSafe。我们的结果表明,ChildSafe成功检测儿童,正确分类率高达97%,假阴性率低至1.82%,假阳性率低至1.46%。我们设想这项工作是设计各种儿童保护应用程序的有效子系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying children with 3D depth cameras for enabling children's safety applications
In this work, we present ChildSafe, a classification system which exploits human skeletal features collected using a 3D depth camera to classify visual characteristics between children and adults. ChildSafe analyzes the histograms of training samples and implements a bin-boundary-based classifier. We train and evaluate ChildSafe using a large dataset of visual samples collected from 150 elementary school children and 43 adults, ranging in the ages of 7 and 50. Our results suggest that ChildSafe successfully detects children with a proper classification rate of up to 97%, a false negative rate of as low as 1.82%, and a low false positive rate of 1.46%. We envision this work as an effective sub-system for designing various child protection applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信