Vincent Dietrich, Bernd Kast, Michael Fiegert, Sebastian Albrecht, M. Beetz
{"title":"感知管道结构的自动配置与参数化","authors":"Vincent Dietrich, Bernd Kast, Michael Fiegert, Sebastian Albrecht, M. Beetz","doi":"10.1109/ICAR46387.2019.8981611","DOIUrl":null,"url":null,"abstract":"The configuration of perception pipelines is a complex procedure that requires substantial amounts of engineering effort and knowledge. A pipeline consists of interconnected individual perception operators and their parameters, which leads to a large configuration space of pipeline structures and parameterizations. This configuration space has to be explored efficiently in order to find a solution that fulfills the specific requirements of the target application. In this paper, we present an approach to perform automatic configuration based on structure templates and sequential model-based optimization. The structure templates allow to reduce the search space and encode prior engineering knowledge. We introduce a structure template based on hypothesis generation, hypothesis refinement, and hypothesis testing to demonstrate the effectiveness of the approach. Experimental evaluation with state-of-the-art operators is performed on data from the T-LESS dataset as well as in a real-world robotic assembly task.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"34 1","pages":"312-319"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automatic Configuration of the Structure and Parameterization of Perception Pipelines\",\"authors\":\"Vincent Dietrich, Bernd Kast, Michael Fiegert, Sebastian Albrecht, M. Beetz\",\"doi\":\"10.1109/ICAR46387.2019.8981611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The configuration of perception pipelines is a complex procedure that requires substantial amounts of engineering effort and knowledge. A pipeline consists of interconnected individual perception operators and their parameters, which leads to a large configuration space of pipeline structures and parameterizations. This configuration space has to be explored efficiently in order to find a solution that fulfills the specific requirements of the target application. In this paper, we present an approach to perform automatic configuration based on structure templates and sequential model-based optimization. The structure templates allow to reduce the search space and encode prior engineering knowledge. We introduce a structure template based on hypothesis generation, hypothesis refinement, and hypothesis testing to demonstrate the effectiveness of the approach. Experimental evaluation with state-of-the-art operators is performed on data from the T-LESS dataset as well as in a real-world robotic assembly task.\",\"PeriodicalId\":6606,\"journal\":{\"name\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"34 1\",\"pages\":\"312-319\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR46387.2019.8981611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Configuration of the Structure and Parameterization of Perception Pipelines
The configuration of perception pipelines is a complex procedure that requires substantial amounts of engineering effort and knowledge. A pipeline consists of interconnected individual perception operators and their parameters, which leads to a large configuration space of pipeline structures and parameterizations. This configuration space has to be explored efficiently in order to find a solution that fulfills the specific requirements of the target application. In this paper, we present an approach to perform automatic configuration based on structure templates and sequential model-based optimization. The structure templates allow to reduce the search space and encode prior engineering knowledge. We introduce a structure template based on hypothesis generation, hypothesis refinement, and hypothesis testing to demonstrate the effectiveness of the approach. Experimental evaluation with state-of-the-art operators is performed on data from the T-LESS dataset as well as in a real-world robotic assembly task.