物流服务中数据分析见解的动态适应性路由系统的开发

Vasileios Tsoukas, Eleni Boumpa, Vasileios Chioktour, M. Kalafati, G. Spathoulas, Athanasios Kakarountas
{"title":"物流服务中数据分析见解的动态适应性路由系统的开发","authors":"Vasileios Tsoukas, Eleni Boumpa, Vasileios Chioktour, M. Kalafati, G. Spathoulas, Athanasios Kakarountas","doi":"10.3390/analytics2020018","DOIUrl":null,"url":null,"abstract":"This work proposes an effective solution to the Vehicle Routing Problem, taking into account all phases of the delivery process. When compared to real-world data, the findings are encouraging and demonstrate the value of Machine Learning algorithms incorporated into the process. Several algorithms were combined along with a modified Hopfield network to deliver the optimal solution to a multiobjective issue on a platform capable of monitoring the various phases of the process. Additionally, a system providing viable insights and analytics in regard to the orders was developed. The results reveal a maximum distance saving of 25% and a maximum overall delivery time saving of 14%.","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Dynamically Adaptable Routing System for Data Analytics Insights in Logistic Services\",\"authors\":\"Vasileios Tsoukas, Eleni Boumpa, Vasileios Chioktour, M. Kalafati, G. Spathoulas, Athanasios Kakarountas\",\"doi\":\"10.3390/analytics2020018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes an effective solution to the Vehicle Routing Problem, taking into account all phases of the delivery process. When compared to real-world data, the findings are encouraging and demonstrate the value of Machine Learning algorithms incorporated into the process. Several algorithms were combined along with a modified Hopfield network to deliver the optimal solution to a multiobjective issue on a platform capable of monitoring the various phases of the process. Additionally, a system providing viable insights and analytics in regard to the orders was developed. The results reveal a maximum distance saving of 25% and a maximum overall delivery time saving of 14%.\",\"PeriodicalId\":93078,\"journal\":{\"name\":\"Big data analytics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big data analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/analytics2020018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big data analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytics2020018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了一个有效的解决方案,车辆路线问题,考虑到所有阶段的交付过程。与现实世界的数据相比,研究结果令人鼓舞,并证明了将机器学习算法纳入该过程的价值。将几种算法与改进的Hopfield网络相结合,在能够监控过程各个阶段的平台上为多目标问题提供最佳解决方案。此外,还开发了一个提供有关订单的可行见解和分析的系统。结果显示,最大距离节省了25%,最大总交付时间节省了14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a Dynamically Adaptable Routing System for Data Analytics Insights in Logistic Services
This work proposes an effective solution to the Vehicle Routing Problem, taking into account all phases of the delivery process. When compared to real-world data, the findings are encouraging and demonstrate the value of Machine Learning algorithms incorporated into the process. Several algorithms were combined along with a modified Hopfield network to deliver the optimal solution to a multiobjective issue on a platform capable of monitoring the various phases of the process. Additionally, a system providing viable insights and analytics in regard to the orders was developed. The results reveal a maximum distance saving of 25% and a maximum overall delivery time saving of 14%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信