并购与创新:一种新的专利分类

Zhao-Hong Cheng, G. Jin, Mario Leccese, Dokyun Lee, Liad Wagman
{"title":"并购与创新:一种新的专利分类","authors":"Zhao-Hong Cheng, G. Jin, Mario Leccese, Dokyun Lee, Liad Wagman","doi":"10.1257/pandp.20231100","DOIUrl":null,"url":null,"abstract":"Policymakers are increasingly concerned that incumbent acquisitions of small or young firms may slow down rather than speed up innovation, but it is difficult to identify which firms are related in the fast-changing space of technological innovation. This paper proposes a new, data-driven method to classify patent data into tech-business zones on a probabilistic basis, using patent assignee information. After combining mergers and acquisitions data from S&P Global Market Intelligence with PatentsView data from the US Patent and Trademark Office, we discuss how the zone classification can aid merger reviews and other lines of research.","PeriodicalId":72114,"journal":{"name":"AEA papers and proceedings. American Economic Association","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"M&A and Innovation: A New Classification of Patents\",\"authors\":\"Zhao-Hong Cheng, G. Jin, Mario Leccese, Dokyun Lee, Liad Wagman\",\"doi\":\"10.1257/pandp.20231100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Policymakers are increasingly concerned that incumbent acquisitions of small or young firms may slow down rather than speed up innovation, but it is difficult to identify which firms are related in the fast-changing space of technological innovation. This paper proposes a new, data-driven method to classify patent data into tech-business zones on a probabilistic basis, using patent assignee information. After combining mergers and acquisitions data from S&P Global Market Intelligence with PatentsView data from the US Patent and Trademark Office, we discuss how the zone classification can aid merger reviews and other lines of research.\",\"PeriodicalId\":72114,\"journal\":{\"name\":\"AEA papers and proceedings. American Economic Association\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AEA papers and proceedings. American Economic Association\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1257/pandp.20231100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AEA papers and proceedings. American Economic Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1257/pandp.20231100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

决策者越来越担心,对小公司或年轻公司的收购可能会减缓而不是加速创新,但很难确定哪些公司在快速变化的技术创新空间中是相关的。本文提出了一种新的数据驱动方法,利用专利受让人信息在概率基础上将专利数据划分为技术商业区域。在将标准普尔全球市场情报公司的并购数据与美国专利商标局的PatentsView数据相结合后,我们将讨论区域分类如何帮助合并审查和其他研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
M&A and Innovation: A New Classification of Patents
Policymakers are increasingly concerned that incumbent acquisitions of small or young firms may slow down rather than speed up innovation, but it is difficult to identify which firms are related in the fast-changing space of technological innovation. This paper proposes a new, data-driven method to classify patent data into tech-business zones on a probabilistic basis, using patent assignee information. After combining mergers and acquisitions data from S&P Global Market Intelligence with PatentsView data from the US Patent and Trademark Office, we discuss how the zone classification can aid merger reviews and other lines of research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信