E. Macias-Garcia, Deysy Galeana Pérez, Jesus Medrano-Hermosillo, E. Bayro-Corrochano
{"title":"移动机器人多阶段深度学习感知系统","authors":"E. Macias-Garcia, Deysy Galeana Pérez, Jesus Medrano-Hermosillo, E. Bayro-Corrochano","doi":"10.3233/ICA-200640","DOIUrl":null,"url":null,"abstract":"This paper presents a novel multi-stage perception system for collision avoidance in mobile robots. In the here considered scenario, a mobile robot stands in a workspace with a set of potential targets to reach or interact with. When a human partner appears gesturing to the target, the robot must plan a collision-free trajectory to reach the goal. To solve this problem, a full-perception system composed of consecutive convolutional neural networks in parallel and processing stages is proposed for generating a collision-free trajectory according to the desired goal. This system is evaluated at each step in real environments and through several performance tests, proving to be a robust and fast system suitable for real-time applications.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Multi-stage deep learning perception system for mobile robots\",\"authors\":\"E. Macias-Garcia, Deysy Galeana Pérez, Jesus Medrano-Hermosillo, E. Bayro-Corrochano\",\"doi\":\"10.3233/ICA-200640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel multi-stage perception system for collision avoidance in mobile robots. In the here considered scenario, a mobile robot stands in a workspace with a set of potential targets to reach or interact with. When a human partner appears gesturing to the target, the robot must plan a collision-free trajectory to reach the goal. To solve this problem, a full-perception system composed of consecutive convolutional neural networks in parallel and processing stages is proposed for generating a collision-free trajectory according to the desired goal. This system is evaluated at each step in real environments and through several performance tests, proving to be a robust and fast system suitable for real-time applications.\",\"PeriodicalId\":50358,\"journal\":{\"name\":\"Integrated Computer-Aided Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Computer-Aided Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ICA-200640\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ICA-200640","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multi-stage deep learning perception system for mobile robots
This paper presents a novel multi-stage perception system for collision avoidance in mobile robots. In the here considered scenario, a mobile robot stands in a workspace with a set of potential targets to reach or interact with. When a human partner appears gesturing to the target, the robot must plan a collision-free trajectory to reach the goal. To solve this problem, a full-perception system composed of consecutive convolutional neural networks in parallel and processing stages is proposed for generating a collision-free trajectory according to the desired goal. This system is evaluated at each step in real environments and through several performance tests, proving to be a robust and fast system suitable for real-time applications.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.