{"title":"基于置信度的多目标运输问题","authors":"Vandana Kakran, J. Dhodiya","doi":"10.11121/ijocta.2022.1166","DOIUrl":null,"url":null,"abstract":"This paper focusses on the development of a Multi-choice Multi-objective Transportation Problem (MCMOTP) in the uncertain environment. The parameters associated with the objective functions in MCMOTP are regarded as uncertain variables and the other parameters associated with supply capacity and demand requirements are considered under the multi-choice environment. In this paper, two ranking criteria have been utilized to convert the uncertain objectives into their crisp form. Using these two ranking criteria for the uncertain MCMOTP model, two deterministic models have been developed namely, Expected Value Model (EV Model) and Optimistic Value Model (OV Model). The multi-choice parameters in the constraints are converted to a single choice parameters with the help of binary variable approach. The EV and OV models are solved directly in the LINGO 18.0 software using minimizing distance method and fuzzy programming technique. At last, a numerical illustration is provided to demonstrate the application and algorithm of the models. The sensitivity of the objective functions in OV Model is also examined with respect to the confidence levels to investigate variation in the objective functions.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"72 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A belief-degree based multi-objective transportation problem with multi-choice demand and supply\",\"authors\":\"Vandana Kakran, J. Dhodiya\",\"doi\":\"10.11121/ijocta.2022.1166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focusses on the development of a Multi-choice Multi-objective Transportation Problem (MCMOTP) in the uncertain environment. The parameters associated with the objective functions in MCMOTP are regarded as uncertain variables and the other parameters associated with supply capacity and demand requirements are considered under the multi-choice environment. In this paper, two ranking criteria have been utilized to convert the uncertain objectives into their crisp form. Using these two ranking criteria for the uncertain MCMOTP model, two deterministic models have been developed namely, Expected Value Model (EV Model) and Optimistic Value Model (OV Model). The multi-choice parameters in the constraints are converted to a single choice parameters with the help of binary variable approach. The EV and OV models are solved directly in the LINGO 18.0 software using minimizing distance method and fuzzy programming technique. At last, a numerical illustration is provided to demonstrate the application and algorithm of the models. The sensitivity of the objective functions in OV Model is also examined with respect to the confidence levels to investigate variation in the objective functions.\",\"PeriodicalId\":37369,\"journal\":{\"name\":\"International Journal of Optimization and Control: Theories and Applications\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optimization and Control: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11121/ijocta.2022.1166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.2022.1166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A belief-degree based multi-objective transportation problem with multi-choice demand and supply
This paper focusses on the development of a Multi-choice Multi-objective Transportation Problem (MCMOTP) in the uncertain environment. The parameters associated with the objective functions in MCMOTP are regarded as uncertain variables and the other parameters associated with supply capacity and demand requirements are considered under the multi-choice environment. In this paper, two ranking criteria have been utilized to convert the uncertain objectives into their crisp form. Using these two ranking criteria for the uncertain MCMOTP model, two deterministic models have been developed namely, Expected Value Model (EV Model) and Optimistic Value Model (OV Model). The multi-choice parameters in the constraints are converted to a single choice parameters with the help of binary variable approach. The EV and OV models are solved directly in the LINGO 18.0 software using minimizing distance method and fuzzy programming technique. At last, a numerical illustration is provided to demonstrate the application and algorithm of the models. The sensitivity of the objective functions in OV Model is also examined with respect to the confidence levels to investigate variation in the objective functions.