近似纳什均衡的通信复杂性

Y. Babichenko, A. Rubinstein
{"title":"近似纳什均衡的通信复杂性","authors":"Y. Babichenko, A. Rubinstein","doi":"10.1145/3055399.3055407","DOIUrl":null,"url":null,"abstract":"For a constant ϵ, we prove a (N) lower bound on the (randomized) communication complexity of ϵ-Nash equilibrium in two-player N x N games. For n-player binary-action games we prove an exp(n) lower bound for the (randomized) communication complexity of (ϵ,ϵ)-weak approximate Nash equilibrium, which is a profile of mixed actions such that at least (1-ϵ)-fraction of the players are ϵ-best replying.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Communication complexity of approximate Nash equilibria\",\"authors\":\"Y. Babichenko, A. Rubinstein\",\"doi\":\"10.1145/3055399.3055407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a constant ϵ, we prove a (N) lower bound on the (randomized) communication complexity of ϵ-Nash equilibrium in two-player N x N games. For n-player binary-action games we prove an exp(n) lower bound for the (randomized) communication complexity of (ϵ,ϵ)-weak approximate Nash equilibrium, which is a profile of mixed actions such that at least (1-ϵ)-fraction of the players are ϵ-best replying.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

对于一个常数ε,我们证明了在双玩家N x N博弈中ϵ-Nash均衡的(随机)通信复杂度的(N)下界。对于n人二元动作游戏,我们证明了(随机)通信复杂度(λ, λ)-弱近似纳什均衡的exp(n)下界,这是混合动作的一个特征,使得至少(1- λ)-部分玩家回复ϵ-best。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Communication complexity of approximate Nash equilibria
For a constant ϵ, we prove a (N) lower bound on the (randomized) communication complexity of ϵ-Nash equilibrium in two-player N x N games. For n-player binary-action games we prove an exp(n) lower bound for the (randomized) communication complexity of (ϵ,ϵ)-weak approximate Nash equilibrium, which is a profile of mixed actions such that at least (1-ϵ)-fraction of the players are ϵ-best replying.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信