基于共发生多方多模态事件发现的人格特征分类

S. Okada, O. Aran, D. Gática-Pérez
{"title":"基于共发生多方多模态事件发现的人格特征分类","authors":"S. Okada, O. Aran, D. Gática-Pérez","doi":"10.1145/2818346.2820757","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel feature extraction framework from mutli-party multimodal conversation for inference of personality traits and emergent leadership. The proposed framework represents multi modal features as the combination of each participant's nonverbal activity and group activity. This feature representation enables to compare the nonverbal patterns extracted from the participants of different groups in a metric space. It captures how the target member outputs nonverbal behavior observed in a group (e.g. the member speaks while all members move their body), and can be available for any kind of multiparty conversation task. Frequent co-occurrent events are discovered using graph clustering from multimodal sequences. The proposed framework is applied for the ELEA corpus which is an audio visual dataset collected from group meetings. We evaluate the framework for binary classification task of 10 personality traits. Experimental results show that the model trained with co-occurrence features obtained higher accuracy than previously related work in 8 out of 10 traits. In addition, the co-occurrence features improve the accuracy from 2 % up to 17 %.","PeriodicalId":20486,"journal":{"name":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Personality Trait Classification via Co-Occurrent Multiparty Multimodal Event Discovery\",\"authors\":\"S. Okada, O. Aran, D. Gática-Pérez\",\"doi\":\"10.1145/2818346.2820757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel feature extraction framework from mutli-party multimodal conversation for inference of personality traits and emergent leadership. The proposed framework represents multi modal features as the combination of each participant's nonverbal activity and group activity. This feature representation enables to compare the nonverbal patterns extracted from the participants of different groups in a metric space. It captures how the target member outputs nonverbal behavior observed in a group (e.g. the member speaks while all members move their body), and can be available for any kind of multiparty conversation task. Frequent co-occurrent events are discovered using graph clustering from multimodal sequences. The proposed framework is applied for the ELEA corpus which is an audio visual dataset collected from group meetings. We evaluate the framework for binary classification task of 10 personality traits. Experimental results show that the model trained with co-occurrence features obtained higher accuracy than previously related work in 8 out of 10 traits. In addition, the co-occurrence features improve the accuracy from 2 % up to 17 %.\",\"PeriodicalId\":20486,\"journal\":{\"name\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2818346.2820757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818346.2820757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

本文提出了一种新的基于多方多模态对话的特征提取框架,用于人格特质和应急领导的推理。该框架体现了多模态特征,即每个参与者的非语言活动和群体活动的结合。这种特征表示可以在度量空间中比较从不同群体参与者中提取的非语言模式。它捕捉目标成员如何输出在群体中观察到的非语言行为(例如,当所有成员都移动他们的身体时,成员说话),并且可以用于任何类型的多方对话任务。利用图聚类方法从多模态序列中发现频繁的共发生事件。提议的框架应用于ELEA语料库,该语料库是从小组会议收集的视听数据集。我们评估了10种人格特质的二元分类任务框架。实验结果表明,用共现特征训练的模型在10个特征中有8个特征的准确率高于已有的模型。此外,共现特征将准确率从2%提高到17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personality Trait Classification via Co-Occurrent Multiparty Multimodal Event Discovery
This paper proposes a novel feature extraction framework from mutli-party multimodal conversation for inference of personality traits and emergent leadership. The proposed framework represents multi modal features as the combination of each participant's nonverbal activity and group activity. This feature representation enables to compare the nonverbal patterns extracted from the participants of different groups in a metric space. It captures how the target member outputs nonverbal behavior observed in a group (e.g. the member speaks while all members move their body), and can be available for any kind of multiparty conversation task. Frequent co-occurrent events are discovered using graph clustering from multimodal sequences. The proposed framework is applied for the ELEA corpus which is an audio visual dataset collected from group meetings. We evaluate the framework for binary classification task of 10 personality traits. Experimental results show that the model trained with co-occurrence features obtained higher accuracy than previously related work in 8 out of 10 traits. In addition, the co-occurrence features improve the accuracy from 2 % up to 17 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信