{"title":"利用相干l1范数检测和分类三量子位态","authors":"A. Kumari, S. Adhikari","doi":"10.26421/QIC23.5-6-1","DOIUrl":null,"url":null,"abstract":"Entanglement is a purely quantum mechanical phenomenon and thus it has no classical analog. On the other hand, coherence is a well-known phenomenon in classical optics and in quantum mechanics. Recent research shows that quantum coherence may act as a useful resource in quantum information theory. We will employ here quantum coherence to detect and classify the entanglement property of three-qubit states. Moreover, we have shown that if any three-qubit state violates another necessary condition for the detection of a general biseparable state then the given three-qubit state cannot be a biseparable state. Since there are only three categories of states for the three-qubit system so if we detect that the state under probe is neither a separable nor a biseparable state then we can definitely conclude that the given three-qubit state is a genuine entangled state. We have illustrated our results with a few examples.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"145 1","pages":"361-378"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection and classification of three-qubit states using l_1 norm of coherence\",\"authors\":\"A. Kumari, S. Adhikari\",\"doi\":\"10.26421/QIC23.5-6-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entanglement is a purely quantum mechanical phenomenon and thus it has no classical analog. On the other hand, coherence is a well-known phenomenon in classical optics and in quantum mechanics. Recent research shows that quantum coherence may act as a useful resource in quantum information theory. We will employ here quantum coherence to detect and classify the entanglement property of three-qubit states. Moreover, we have shown that if any three-qubit state violates another necessary condition for the detection of a general biseparable state then the given three-qubit state cannot be a biseparable state. Since there are only three categories of states for the three-qubit system so if we detect that the state under probe is neither a separable nor a biseparable state then we can definitely conclude that the given three-qubit state is a genuine entangled state. We have illustrated our results with a few examples.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"145 1\",\"pages\":\"361-378\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/QIC23.5-6-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC23.5-6-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection and classification of three-qubit states using l_1 norm of coherence
Entanglement is a purely quantum mechanical phenomenon and thus it has no classical analog. On the other hand, coherence is a well-known phenomenon in classical optics and in quantum mechanics. Recent research shows that quantum coherence may act as a useful resource in quantum information theory. We will employ here quantum coherence to detect and classify the entanglement property of three-qubit states. Moreover, we have shown that if any three-qubit state violates another necessary condition for the detection of a general biseparable state then the given three-qubit state cannot be a biseparable state. Since there are only three categories of states for the three-qubit system so if we detect that the state under probe is neither a separable nor a biseparable state then we can definitely conclude that the given three-qubit state is a genuine entangled state. We have illustrated our results with a few examples.