欧拉正切数以720为模,格诺奇数以45为模

Pub Date : 2022-10-11 DOI:10.3792/pjaa.98.012
A. Dzhumadil'daev, Medet Jumadildayev
{"title":"欧拉正切数以720为模,格诺奇数以45为模","authors":"A. Dzhumadil'daev, Medet Jumadildayev","doi":"10.3792/pjaa.98.012","DOIUrl":null,"url":null,"abstract":": We establish congruences for higher order Euler polynomials modulo 720. We apply this result for constructing analogues of Stern congruences for Euler secant numbers E 4 n (cid:3) 5 ð mod 60 Þ ; E 4 n þ 2 (cid:3) (cid:4) 1 ð mod 60 Þ to Euler tangent numbers and Genocchi numbers. We prove that Euler tangent numbers satisfy the following congruences E 4 n þ 1 (cid:3) 16 ð mod 720 Þ , and E 4 n þ 3 (cid:3) (cid:4) 272 ð mod 720 Þ . We establish 12-periodic property of Genocchi numbers modulo 45.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Euler tangent numbers modulo 720 and Genocchi numbers modulo 45\",\"authors\":\"A. Dzhumadil'daev, Medet Jumadildayev\",\"doi\":\"10.3792/pjaa.98.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": We establish congruences for higher order Euler polynomials modulo 720. We apply this result for constructing analogues of Stern congruences for Euler secant numbers E 4 n (cid:3) 5 ð mod 60 Þ ; E 4 n þ 2 (cid:3) (cid:4) 1 ð mod 60 Þ to Euler tangent numbers and Genocchi numbers. We prove that Euler tangent numbers satisfy the following congruences E 4 n þ 1 (cid:3) 16 ð mod 720 Þ , and E 4 n þ 3 (cid:3) (cid:4) 272 ð mod 720 Þ . We establish 12-periodic property of Genocchi numbers modulo 45.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/pjaa.98.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/pjaa.98.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了以720为模的高阶欧拉多项式的同余式。我们将这一结果应用于构造欧拉正割数e4 n (cid:3) 5 ð mod 60 Þ的Stern同余的类似物;e4n þ 2 (cid:3) (cid:4) 1 ð mod 60 Þ到Euler正切数和Genocchi数。我们证明了欧拉正切数满足下列同余式e4n þ 1 (cid:3) 16 ð mod 720 Þ和e4n þ 3 (cid:3) (cid:4) 272 ð mod 720 Þ。建立了以45为模的Genocchi数的12周期性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Euler tangent numbers modulo 720 and Genocchi numbers modulo 45
: We establish congruences for higher order Euler polynomials modulo 720. We apply this result for constructing analogues of Stern congruences for Euler secant numbers E 4 n (cid:3) 5 ð mod 60 Þ ; E 4 n þ 2 (cid:3) (cid:4) 1 ð mod 60 Þ to Euler tangent numbers and Genocchi numbers. We prove that Euler tangent numbers satisfy the following congruences E 4 n þ 1 (cid:3) 16 ð mod 720 Þ , and E 4 n þ 3 (cid:3) (cid:4) 272 ð mod 720 Þ . We establish 12-periodic property of Genocchi numbers modulo 45.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信