被限制在圆盘上的活性粒子的逃逸问题

K. S. Olsen, L. Angheluta, E. Flekkøy
{"title":"被限制在圆盘上的活性粒子的逃逸问题","authors":"K. S. Olsen, L. Angheluta, E. Flekkøy","doi":"10.1103/physrevresearch.2.043314","DOIUrl":null,"url":null,"abstract":"We study the escape problem for interacting, self-propelled particles confined to a disc, where particles can exit through one open slot on the circumference. Within a minimal 2D Vicsek model, we numerically study the statistics of escape events when the self-propelled particles can be in a flocking state. We show that while an exponential survival probability is characteristic for non-interaction self-propelled particles at all times, the interacting particles have an initial exponential phase crossing over to a sub-exponential late-time behavior. We propose a new phenomenological model based on non-stationary Poisson processes which includes the Allee effect to explain this sub-exponential trend and perform numerical simulations for various noise intensities.","PeriodicalId":8473,"journal":{"name":"arXiv: Statistical Mechanics","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Escape problem for active particles confined to a disk\",\"authors\":\"K. S. Olsen, L. Angheluta, E. Flekkøy\",\"doi\":\"10.1103/physrevresearch.2.043314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the escape problem for interacting, self-propelled particles confined to a disc, where particles can exit through one open slot on the circumference. Within a minimal 2D Vicsek model, we numerically study the statistics of escape events when the self-propelled particles can be in a flocking state. We show that while an exponential survival probability is characteristic for non-interaction self-propelled particles at all times, the interacting particles have an initial exponential phase crossing over to a sub-exponential late-time behavior. We propose a new phenomenological model based on non-stationary Poisson processes which includes the Allee effect to explain this sub-exponential trend and perform numerical simulations for various noise intensities.\",\"PeriodicalId\":8473,\"journal\":{\"name\":\"arXiv: Statistical Mechanics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevresearch.2.043314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.2.043314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们研究了被限制在圆盘上的相互作用的、自我推进的粒子的逃逸问题,其中粒子可以通过圆周上的一个开槽出口。在最小二维Vicsek模型中,我们数值研究了自走粒子处于群集状态时的逃逸事件统计。我们表明,尽管非相互作用的自推进粒子在任何时候都具有指数生存概率的特征,但相互作用的粒子具有初始指数阶段过渡到亚指数后期行为的特征。我们提出了一个新的基于非平稳泊松过程的现象学模型,其中包括Allee效应来解释这种次指数趋势,并对各种噪声强度进行了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Escape problem for active particles confined to a disk
We study the escape problem for interacting, self-propelled particles confined to a disc, where particles can exit through one open slot on the circumference. Within a minimal 2D Vicsek model, we numerically study the statistics of escape events when the self-propelled particles can be in a flocking state. We show that while an exponential survival probability is characteristic for non-interaction self-propelled particles at all times, the interacting particles have an initial exponential phase crossing over to a sub-exponential late-time behavior. We propose a new phenomenological model based on non-stationary Poisson processes which includes the Allee effect to explain this sub-exponential trend and perform numerical simulations for various noise intensities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信