{"title":"高速至超高速冲击下泡沫材料动力特性的数值研究","authors":"Xiaotian Zhang, Ruiqing Wang, Q. M. Li","doi":"10.1115/hvis2019-071","DOIUrl":null,"url":null,"abstract":"\n Hypervelocity tests and numerical studies have been reported in the literature for aluminum foam to show its potential applications in spacecraft shielding against space debris based on “shielding set-up”. Meanwhile the “forward impact” set-up has been widely reported in the literature to study the dynamic behavior of the foam materials in the range of low to intermediate impact velocities. This paper extends the forward impact to high- and hyper-velocity impacts to understand the dynamic deformation and failure mechanisms based on numerical simulation. The focused impact velocity range is from about 1km/s to 6km/s. The cell-based numerical model of the foam material is used along with the Smoothed Particle Hydrodynamics (SPH) method to simulate the deformation and the failure process. The failure of the foam materials in the range of intermediate to high impact velocities is related to the plastic yielding and crushing of the foam cell, while that in the hypervelocity impact regime is related to the cell material erosion. Dynamic effects in different impact velocity ranges also lead to shock and strain-rate effects. Understanding of the dependence of the deformation/failure mechanisms on the impact velocity helps to determine the application of foam materials in the relevant range of impact velocities.","PeriodicalId":6596,"journal":{"name":"2019 15th Hypervelocity Impact Symposium","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study of dynamic behavior of foams subjected to high- to hyper-velocity impact\",\"authors\":\"Xiaotian Zhang, Ruiqing Wang, Q. M. Li\",\"doi\":\"10.1115/hvis2019-071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Hypervelocity tests and numerical studies have been reported in the literature for aluminum foam to show its potential applications in spacecraft shielding against space debris based on “shielding set-up”. Meanwhile the “forward impact” set-up has been widely reported in the literature to study the dynamic behavior of the foam materials in the range of low to intermediate impact velocities. This paper extends the forward impact to high- and hyper-velocity impacts to understand the dynamic deformation and failure mechanisms based on numerical simulation. The focused impact velocity range is from about 1km/s to 6km/s. The cell-based numerical model of the foam material is used along with the Smoothed Particle Hydrodynamics (SPH) method to simulate the deformation and the failure process. The failure of the foam materials in the range of intermediate to high impact velocities is related to the plastic yielding and crushing of the foam cell, while that in the hypervelocity impact regime is related to the cell material erosion. Dynamic effects in different impact velocity ranges also lead to shock and strain-rate effects. Understanding of the dependence of the deformation/failure mechanisms on the impact velocity helps to determine the application of foam materials in the relevant range of impact velocities.\",\"PeriodicalId\":6596,\"journal\":{\"name\":\"2019 15th Hypervelocity Impact Symposium\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th Hypervelocity Impact Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/hvis2019-071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th Hypervelocity Impact Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/hvis2019-071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical study of dynamic behavior of foams subjected to high- to hyper-velocity impact
Hypervelocity tests and numerical studies have been reported in the literature for aluminum foam to show its potential applications in spacecraft shielding against space debris based on “shielding set-up”. Meanwhile the “forward impact” set-up has been widely reported in the literature to study the dynamic behavior of the foam materials in the range of low to intermediate impact velocities. This paper extends the forward impact to high- and hyper-velocity impacts to understand the dynamic deformation and failure mechanisms based on numerical simulation. The focused impact velocity range is from about 1km/s to 6km/s. The cell-based numerical model of the foam material is used along with the Smoothed Particle Hydrodynamics (SPH) method to simulate the deformation and the failure process. The failure of the foam materials in the range of intermediate to high impact velocities is related to the plastic yielding and crushing of the foam cell, while that in the hypervelocity impact regime is related to the cell material erosion. Dynamic effects in different impact velocity ranges also lead to shock and strain-rate effects. Understanding of the dependence of the deformation/failure mechanisms on the impact velocity helps to determine the application of foam materials in the relevant range of impact velocities.