利用机器学习进行多相催化知识发现的最新进展

M. Erdem Günay, R. Yıldırım
{"title":"利用机器学习进行多相催化知识发现的最新进展","authors":"M. Erdem Günay, R. Yıldırım","doi":"10.1080/01614940.2020.1770402","DOIUrl":null,"url":null,"abstract":"ABSTRACT The use of machine learning (ML) in catalysis has been significantly increased in recent years due to the astonishing developments in data processing technologies and the accumulation of a large amount of data in published literature and databases. The data generated in house or extracted from external sources have been analyzed using various ML techniques to see patterns, develop models for prediction and deduce heuristic rules for the future. This communication aims to review the works involving knowledge discovery in catalysis using ML techniques; the basic principles, common tools and implementation of ML in catalysis are also summarized. Abbreviations: ANN: Artificial neural network; ASLA: Atomistic structure learning algorithm; CatApp: A web application heterogeneous catalysis; CSD: Cambridge Structural Database; co-pre: Co-precipitation; Cx: Fraction of curvature; DFT: Density functional theory; DT: Decision tree; ∆ECO: CO adsorption energy; Fx: Fraction of facets; MBTR: Many-body tensor representation; ML: Machine learning; MOF: Metal-organic framework; Nx: Number of atoms; PC: Polymerized complex; Rx: Radius; R2: Coefficient of determination; RMSE: Root mean square error; RSM: Response surface methodology; SG: Sol-gel; SISSO: Sure independence screening and sparsifying operator; SIMELS: Simplified molecular-input line-entry system; SOAP: Smooth overlap of atomic positions; SSR: Solid-state reaction; T: Temperature; t: Time; τ: Atomic deposition rate; WIPO: World Intellectual Property Organization; WOS: Web of Science; XANES: X-ray absorption near-edge structure","PeriodicalId":9647,"journal":{"name":"Catalysis Reviews","volume":"34 1","pages":"120 - 164"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Recent advances in knowledge discovery for heterogeneous catalysis using machine learning\",\"authors\":\"M. Erdem Günay, R. Yıldırım\",\"doi\":\"10.1080/01614940.2020.1770402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The use of machine learning (ML) in catalysis has been significantly increased in recent years due to the astonishing developments in data processing technologies and the accumulation of a large amount of data in published literature and databases. The data generated in house or extracted from external sources have been analyzed using various ML techniques to see patterns, develop models for prediction and deduce heuristic rules for the future. This communication aims to review the works involving knowledge discovery in catalysis using ML techniques; the basic principles, common tools and implementation of ML in catalysis are also summarized. Abbreviations: ANN: Artificial neural network; ASLA: Atomistic structure learning algorithm; CatApp: A web application heterogeneous catalysis; CSD: Cambridge Structural Database; co-pre: Co-precipitation; Cx: Fraction of curvature; DFT: Density functional theory; DT: Decision tree; ∆ECO: CO adsorption energy; Fx: Fraction of facets; MBTR: Many-body tensor representation; ML: Machine learning; MOF: Metal-organic framework; Nx: Number of atoms; PC: Polymerized complex; Rx: Radius; R2: Coefficient of determination; RMSE: Root mean square error; RSM: Response surface methodology; SG: Sol-gel; SISSO: Sure independence screening and sparsifying operator; SIMELS: Simplified molecular-input line-entry system; SOAP: Smooth overlap of atomic positions; SSR: Solid-state reaction; T: Temperature; t: Time; τ: Atomic deposition rate; WIPO: World Intellectual Property Organization; WOS: Web of Science; XANES: X-ray absorption near-edge structure\",\"PeriodicalId\":9647,\"journal\":{\"name\":\"Catalysis Reviews\",\"volume\":\"34 1\",\"pages\":\"120 - 164\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01614940.2020.1770402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01614940.2020.1770402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

近年来,由于数据处理技术的惊人发展以及已发表文献和数据库中大量数据的积累,机器学习(ML)在催化中的应用显著增加。内部生成的数据或从外部来源提取的数据已经使用各种ML技术进行分析,以查看模式,开发预测模型并推断未来的启发式规则。本交流旨在回顾使用ML技术在催化中涉及知识发现的工作;总结了机器学习在催化中的基本原理、常用工具和实现方法。ANN:人工神经网络;ASLA:原子结构学习算法;CatApp:一个异构催化的web应用程序;CSD:剑桥结构数据库;co-pre:共同沉淀;Cx:曲率分数;密度泛函理论;DT:决策树;∆ECO: CO吸附能;Fx: facet的分数;MBTR:多体张量表示;ML:机器学习;MOF:金属有机骨架;Nx:原子数;PC:聚合配合物;处方:半径;R2:决定系数;RMSE:均方根误差;响应面法;SG:溶胶-凝胶法;SISSO:可靠的独立筛选和稀疏操作器;SIMELS:简化分子输入联机系统;SOAP:原子位置的平滑重叠;SSR:固态反应;T:温度;t:时间;τ:原子沉积速率;WIPO:世界知识产权组织;WOS:科学网络;XANES: x射线吸收近边结构
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advances in knowledge discovery for heterogeneous catalysis using machine learning
ABSTRACT The use of machine learning (ML) in catalysis has been significantly increased in recent years due to the astonishing developments in data processing technologies and the accumulation of a large amount of data in published literature and databases. The data generated in house or extracted from external sources have been analyzed using various ML techniques to see patterns, develop models for prediction and deduce heuristic rules for the future. This communication aims to review the works involving knowledge discovery in catalysis using ML techniques; the basic principles, common tools and implementation of ML in catalysis are also summarized. Abbreviations: ANN: Artificial neural network; ASLA: Atomistic structure learning algorithm; CatApp: A web application heterogeneous catalysis; CSD: Cambridge Structural Database; co-pre: Co-precipitation; Cx: Fraction of curvature; DFT: Density functional theory; DT: Decision tree; ∆ECO: CO adsorption energy; Fx: Fraction of facets; MBTR: Many-body tensor representation; ML: Machine learning; MOF: Metal-organic framework; Nx: Number of atoms; PC: Polymerized complex; Rx: Radius; R2: Coefficient of determination; RMSE: Root mean square error; RSM: Response surface methodology; SG: Sol-gel; SISSO: Sure independence screening and sparsifying operator; SIMELS: Simplified molecular-input line-entry system; SOAP: Smooth overlap of atomic positions; SSR: Solid-state reaction; T: Temperature; t: Time; τ: Atomic deposition rate; WIPO: World Intellectual Property Organization; WOS: Web of Science; XANES: X-ray absorption near-edge structure
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信