作为流量测量装置的水工建筑物

IF 1.4 Q4 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
E. Bílková, J. Souček, K. Tskhakaia, Petr Nowak
{"title":"作为流量测量装置的水工建筑物","authors":"E. Bílková, J. Souček, K. Tskhakaia, Petr Nowak","doi":"10.2478/rtuect-2023-0002","DOIUrl":null,"url":null,"abstract":"Abstract Discharge measurement is the base of proper water management. The effective design and operation of hydraulic structures under both normal and extreme flow conditions depend on the quality of hydrological data. Understanding the water system requires consistent and long-term measurement. Despite that, the gauging station network is sparse, and its numbers are declining worldwide. This article aims to draw attention to the possibility of accurate flow measurement using existing hydraulic structures. Flow over a hydraulic structure profile is a physically well-defined phenomenon as the construction shape is fixed and simple compared to river profiles. The discharge can be derived from rating curves, turbine characteristics, and several easily measured variables. That allows continuous discharge measurement. The accuracy is compared with the gauging station on the river. Suitable technical solutions for ensuring and monitoring ecological flow are discussed.","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":"5 1","pages":"16 - 27"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydraulic Structures as Flow Measuring Devices\",\"authors\":\"E. Bílková, J. Souček, K. Tskhakaia, Petr Nowak\",\"doi\":\"10.2478/rtuect-2023-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Discharge measurement is the base of proper water management. The effective design and operation of hydraulic structures under both normal and extreme flow conditions depend on the quality of hydrological data. Understanding the water system requires consistent and long-term measurement. Despite that, the gauging station network is sparse, and its numbers are declining worldwide. This article aims to draw attention to the possibility of accurate flow measurement using existing hydraulic structures. Flow over a hydraulic structure profile is a physically well-defined phenomenon as the construction shape is fixed and simple compared to river profiles. The discharge can be derived from rating curves, turbine characteristics, and several easily measured variables. That allows continuous discharge measurement. The accuracy is compared with the gauging station on the river. Suitable technical solutions for ensuring and monitoring ecological flow are discussed.\",\"PeriodicalId\":46053,\"journal\":{\"name\":\"Environmental and Climate Technologies\",\"volume\":\"5 1\",\"pages\":\"16 - 27\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Climate Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rtuect-2023-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2023-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要排放测量是合理进行水管理的基础。水工建筑物在正常和极端水流条件下的有效设计和运行取决于水文数据的质量。了解水系统需要持续和长期的测量。尽管如此,测量站网络还是很稀疏,而且在世界范围内,测量站的数量正在减少。本文旨在引起人们对利用现有水工结构进行精确流量测量的可能性的关注。水工构筑物剖面上的水流是一种物理上定义明确的现象,因为与河流剖面相比,水工构筑物的形状是固定的、简单的。流量可以从额定值曲线、涡轮特性和几个容易测量的变量中得出。这允许连续放电测量。并与河上测量站的精度进行了比较。探讨了保障和监测生态流量的适宜技术方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydraulic Structures as Flow Measuring Devices
Abstract Discharge measurement is the base of proper water management. The effective design and operation of hydraulic structures under both normal and extreme flow conditions depend on the quality of hydrological data. Understanding the water system requires consistent and long-term measurement. Despite that, the gauging station network is sparse, and its numbers are declining worldwide. This article aims to draw attention to the possibility of accurate flow measurement using existing hydraulic structures. Flow over a hydraulic structure profile is a physically well-defined phenomenon as the construction shape is fixed and simple compared to river profiles. The discharge can be derived from rating curves, turbine characteristics, and several easily measured variables. That allows continuous discharge measurement. The accuracy is compared with the gauging station on the river. Suitable technical solutions for ensuring and monitoring ecological flow are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental and Climate Technologies
Environmental and Climate Technologies GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
3.10
自引率
28.60%
发文量
0
审稿时长
16 weeks
期刊介绍: Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信