Abed C. Malti, R. Hartley, A. Bartoli, Jae-Hak Kim
{"title":"基于单目模板的局部线弹性可扩展曲面三维重建","authors":"Abed C. Malti, R. Hartley, A. Bartoli, Jae-Hak Kim","doi":"10.1109/CVPR.2013.200","DOIUrl":null,"url":null,"abstract":"We propose a new approach for template-based extensible surface reconstruction from a single view. We extend the method of isometric surface reconstruction and more recent work on conformal surface reconstruction. Our approach relies on the minimization of a proposed stretching energy formalized with respect to the Poisson ratio parameter of the surface. We derive a patch-based formulation of this stretching energy by assuming local linear elasticity. This formulation unifies geometrical and mechanical constraints in a single energy term. We prevent local scale ambiguities by imposing a set of fixed boundary 3D points. We experimentally prove the sufficiency of this set of boundary points and demonstrate the effectiveness of our approach on different developable and non-developable surfaces with a wide range of extensibility.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"34 1","pages":"1522-1529"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Monocular Template-Based 3D Reconstruction of Extensible Surfaces with Local Linear Elasticity\",\"authors\":\"Abed C. Malti, R. Hartley, A. Bartoli, Jae-Hak Kim\",\"doi\":\"10.1109/CVPR.2013.200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new approach for template-based extensible surface reconstruction from a single view. We extend the method of isometric surface reconstruction and more recent work on conformal surface reconstruction. Our approach relies on the minimization of a proposed stretching energy formalized with respect to the Poisson ratio parameter of the surface. We derive a patch-based formulation of this stretching energy by assuming local linear elasticity. This formulation unifies geometrical and mechanical constraints in a single energy term. We prevent local scale ambiguities by imposing a set of fixed boundary 3D points. We experimentally prove the sufficiency of this set of boundary points and demonstrate the effectiveness of our approach on different developable and non-developable surfaces with a wide range of extensibility.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"34 1\",\"pages\":\"1522-1529\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monocular Template-Based 3D Reconstruction of Extensible Surfaces with Local Linear Elasticity
We propose a new approach for template-based extensible surface reconstruction from a single view. We extend the method of isometric surface reconstruction and more recent work on conformal surface reconstruction. Our approach relies on the minimization of a proposed stretching energy formalized with respect to the Poisson ratio parameter of the surface. We derive a patch-based formulation of this stretching energy by assuming local linear elasticity. This formulation unifies geometrical and mechanical constraints in a single energy term. We prevent local scale ambiguities by imposing a set of fixed boundary 3D points. We experimentally prove the sufficiency of this set of boundary points and demonstrate the effectiveness of our approach on different developable and non-developable surfaces with a wide range of extensibility.