临界情况下R_d+上的仿射递归

Pub Date : 2021-01-01 DOI:10.30757/ALEA.V18-37
S. Brofferio, M. Peigné, Thi da Cam Pham
{"title":"临界情况下R_d+上的仿射递归","authors":"S. Brofferio, M. Peigné, Thi da Cam Pham","doi":"10.30757/ALEA.V18-37","DOIUrl":null,"url":null,"abstract":"We fix d ≥ 2 and denote S the semi-group of d× d matrices with non negative entries. We consider a sequence (An, Bn)n≥1 of i. i. d. random variables with values in S × R+ and study the asymptotic behavior of the Markov chain (Xn)n≥0 on R+ defined by: ∀n ≥ 0, Xn+1 = An+1Xn +Bn+1, where X0 is a fixed random variable. We assume that the Lyapunov exponent of the matrices An equals 0 and prove, under quite general hypotheses, that there exists a unique (infinite) Radon measure λ on (R+)d which is invariant for the chain (Xn)n≥0. The existence of λ relies on a recent work by T.D.C. Pham about fluctuations of the norm of product of random matrices [16]. Its unicity is a consequence of a general property, called “local contractivity”, highlighted about 20 years ago by M. Babillot, Ph. Bougerol et L. Elie in the case of the one dimensional affine recursion [1] .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the affine recursion on R_d+ in the critical case\",\"authors\":\"S. Brofferio, M. Peigné, Thi da Cam Pham\",\"doi\":\"10.30757/ALEA.V18-37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We fix d ≥ 2 and denote S the semi-group of d× d matrices with non negative entries. We consider a sequence (An, Bn)n≥1 of i. i. d. random variables with values in S × R+ and study the asymptotic behavior of the Markov chain (Xn)n≥0 on R+ defined by: ∀n ≥ 0, Xn+1 = An+1Xn +Bn+1, where X0 is a fixed random variable. We assume that the Lyapunov exponent of the matrices An equals 0 and prove, under quite general hypotheses, that there exists a unique (infinite) Radon measure λ on (R+)d which is invariant for the chain (Xn)n≥0. The existence of λ relies on a recent work by T.D.C. Pham about fluctuations of the norm of product of random matrices [16]. Its unicity is a consequence of a general property, called “local contractivity”, highlighted about 20 years ago by M. Babillot, Ph. Bougerol et L. Elie in the case of the one dimensional affine recursion [1] .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/ALEA.V18-37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/ALEA.V18-37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们定d≥2,并将S记为具有非负项的d× d矩阵的半群。我们考虑一个序列(An, Bn)n≥1,包含i. i. d个值在S × R+中的随机变量,并研究马尔可夫链(Xn)n≥0在R+上的渐近性:∀n≥0,Xn+1 = An+1Xn +Bn+1,其中X0是一个固定的随机变量。我们假设矩阵An的Lyapunov指数等于0,并在相当一般的假设下证明在(R+)d上存在一个唯一的(无限的)Radon测度λ,该测度对于链(Xn)n≥0是不变的。λ的存在依赖于T.D.C. Pham最近关于随机矩阵乘积范数涨落的研究[16]。它的唯一性是一个一般性质的结果,称为“局部收缩性”,大约20年前由M. babilllot, Ph. Bougerol和L. Elie在一维仿射递推的情况下强调[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the affine recursion on R_d+ in the critical case
We fix d ≥ 2 and denote S the semi-group of d× d matrices with non negative entries. We consider a sequence (An, Bn)n≥1 of i. i. d. random variables with values in S × R+ and study the asymptotic behavior of the Markov chain (Xn)n≥0 on R+ defined by: ∀n ≥ 0, Xn+1 = An+1Xn +Bn+1, where X0 is a fixed random variable. We assume that the Lyapunov exponent of the matrices An equals 0 and prove, under quite general hypotheses, that there exists a unique (infinite) Radon measure λ on (R+)d which is invariant for the chain (Xn)n≥0. The existence of λ relies on a recent work by T.D.C. Pham about fluctuations of the norm of product of random matrices [16]. Its unicity is a consequence of a general property, called “local contractivity”, highlighted about 20 years ago by M. Babillot, Ph. Bougerol et L. Elie in the case of the one dimensional affine recursion [1] .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信