{"title":"在随机Delaunay三角剖分中,最差的可见度是$O(\\sqrt{n})$","authors":"O. Devillers, Ross Hemsley","doi":"10.20382/jocg.v7i1a16","DOIUrl":null,"url":null,"abstract":"We show that the memoryless routing algorithms Greedy Walk, Compass Walk, and all variants of visibility walk based on orientation predicates are asymptotically optimal in the average case on the Delaunay triangulation. More specifically, we consider the Delaunay triangulation of an unbounded Poisson point process of unit rate and demonstrate that, for any pair of vertices $(s,t)$ inside $[0,n]^2$, the ratio between the longest and shortest visibility walks between $s$ and $t$ is bounded by a constant with probability converging to one (as long as the vertices are sufficiently far apart). As a corollary, it follows that the worst-case path has $O(\\sqrt{n}\\,)$ steps in the limiting case, under the same conditions. Our results have applications in routing in mobile networks and also settle a long-standing conjecture in point location using walking algorithms. Our proofs use techniques from percolation theory and stochastic geometry.","PeriodicalId":54969,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"30 1","pages":"332-359"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The worst visibility walk in a random Delaunay triangulation is $O(\\\\sqrt{n})$\",\"authors\":\"O. Devillers, Ross Hemsley\",\"doi\":\"10.20382/jocg.v7i1a16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the memoryless routing algorithms Greedy Walk, Compass Walk, and all variants of visibility walk based on orientation predicates are asymptotically optimal in the average case on the Delaunay triangulation. More specifically, we consider the Delaunay triangulation of an unbounded Poisson point process of unit rate and demonstrate that, for any pair of vertices $(s,t)$ inside $[0,n]^2$, the ratio between the longest and shortest visibility walks between $s$ and $t$ is bounded by a constant with probability converging to one (as long as the vertices are sufficiently far apart). As a corollary, it follows that the worst-case path has $O(\\\\sqrt{n}\\\\,)$ steps in the limiting case, under the same conditions. Our results have applications in routing in mobile networks and also settle a long-standing conjecture in point location using walking algorithms. Our proofs use techniques from percolation theory and stochastic geometry.\",\"PeriodicalId\":54969,\"journal\":{\"name\":\"International Journal of Computational Geometry & Applications\",\"volume\":\"30 1\",\"pages\":\"332-359\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Geometry & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20382/jocg.v7i1a16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v7i1a16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
The worst visibility walk in a random Delaunay triangulation is $O(\sqrt{n})$
We show that the memoryless routing algorithms Greedy Walk, Compass Walk, and all variants of visibility walk based on orientation predicates are asymptotically optimal in the average case on the Delaunay triangulation. More specifically, we consider the Delaunay triangulation of an unbounded Poisson point process of unit rate and demonstrate that, for any pair of vertices $(s,t)$ inside $[0,n]^2$, the ratio between the longest and shortest visibility walks between $s$ and $t$ is bounded by a constant with probability converging to one (as long as the vertices are sufficiently far apart). As a corollary, it follows that the worst-case path has $O(\sqrt{n}\,)$ steps in the limiting case, under the same conditions. Our results have applications in routing in mobile networks and also settle a long-standing conjecture in point location using walking algorithms. Our proofs use techniques from percolation theory and stochastic geometry.
期刊介绍:
The International Journal of Computational Geometry & Applications (IJCGA) is a quarterly journal devoted to the field of computational geometry within the framework of design and analysis of algorithms.
Emphasis is placed on the computational aspects of geometric problems that arise in various fields of science and engineering including computer-aided geometry design (CAGD), computer graphics, constructive solid geometry (CSG), operations research, pattern recognition, robotics, solid modelling, VLSI routing/layout, and others. Research contributions ranging from theoretical results in algorithm design — sequential or parallel, probabilistic or randomized algorithms — to applications in the above-mentioned areas are welcome. Research findings or experiences in the implementations of geometric algorithms, such as numerical stability, and papers with a geometric flavour related to algorithms or the application areas of computational geometry are also welcome.