{"title":"广义比率模型的鲁棒估计","authors":"Kazumichi Wada, Keiichiro Sakashita, H. Tsubaki","doi":"10.17713/AJS.V50I1.994","DOIUrl":null,"url":null,"abstract":"It is known that data such as business sales and household income need data transformation prior to regression estimate as the data has a homoscedastic error. However, data transformations make the estimation of mean and total unstable. Therefore, the ratio model is often used for imputation in the field of official statistics to avoid the problem. Our study aims to robustify the estimator following the ratio model by means of Mestimation. Reformulation of the conventional ratio model with homoscedastic quasi-error term provides quasi-residuals which can be used as a measure of outlyingness as same as a linear regression model. A generalisation of the model, which accommodates varied error terms with different heteroscedasticity, is also proposed. Functions for robustified estimators of the generalised ratio model are implemented by the iterative re-weighted least squares algorithm in R environment and illustrated using random datasets. Monte Carlo simulation confirms accuracy of the proposed estimators, as well as their computational efficiency. A comparison of the scale parameters between the average absolute deviation (AAD) and median absolute deviation (MAD) is made regarding Tukey’s biweight function. The results with Huber’s weight function are also provided for reference. The proposed robust estimator of the generalised ratio model is used for imputation of major corporate accounting items of the 2016 Economic Census for Business Activity in Japan.","PeriodicalId":51761,"journal":{"name":"Austrian Journal of Statistics","volume":"120 1","pages":"74-87"},"PeriodicalIF":0.6000,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust Estimation for a Generalised Ratio Model\",\"authors\":\"Kazumichi Wada, Keiichiro Sakashita, H. Tsubaki\",\"doi\":\"10.17713/AJS.V50I1.994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that data such as business sales and household income need data transformation prior to regression estimate as the data has a homoscedastic error. However, data transformations make the estimation of mean and total unstable. Therefore, the ratio model is often used for imputation in the field of official statistics to avoid the problem. Our study aims to robustify the estimator following the ratio model by means of Mestimation. Reformulation of the conventional ratio model with homoscedastic quasi-error term provides quasi-residuals which can be used as a measure of outlyingness as same as a linear regression model. A generalisation of the model, which accommodates varied error terms with different heteroscedasticity, is also proposed. Functions for robustified estimators of the generalised ratio model are implemented by the iterative re-weighted least squares algorithm in R environment and illustrated using random datasets. Monte Carlo simulation confirms accuracy of the proposed estimators, as well as their computational efficiency. A comparison of the scale parameters between the average absolute deviation (AAD) and median absolute deviation (MAD) is made regarding Tukey’s biweight function. The results with Huber’s weight function are also provided for reference. The proposed robust estimator of the generalised ratio model is used for imputation of major corporate accounting items of the 2016 Economic Census for Business Activity in Japan.\",\"PeriodicalId\":51761,\"journal\":{\"name\":\"Austrian Journal of Statistics\",\"volume\":\"120 1\",\"pages\":\"74-87\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austrian Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17713/AJS.V50I1.994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17713/AJS.V50I1.994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
It is known that data such as business sales and household income need data transformation prior to regression estimate as the data has a homoscedastic error. However, data transformations make the estimation of mean and total unstable. Therefore, the ratio model is often used for imputation in the field of official statistics to avoid the problem. Our study aims to robustify the estimator following the ratio model by means of Mestimation. Reformulation of the conventional ratio model with homoscedastic quasi-error term provides quasi-residuals which can be used as a measure of outlyingness as same as a linear regression model. A generalisation of the model, which accommodates varied error terms with different heteroscedasticity, is also proposed. Functions for robustified estimators of the generalised ratio model are implemented by the iterative re-weighted least squares algorithm in R environment and illustrated using random datasets. Monte Carlo simulation confirms accuracy of the proposed estimators, as well as their computational efficiency. A comparison of the scale parameters between the average absolute deviation (AAD) and median absolute deviation (MAD) is made regarding Tukey’s biweight function. The results with Huber’s weight function are also provided for reference. The proposed robust estimator of the generalised ratio model is used for imputation of major corporate accounting items of the 2016 Economic Census for Business Activity in Japan.
期刊介绍:
The Austrian Journal of Statistics is an open-access journal (without any fees) with a long history and is published approximately quarterly by the Austrian Statistical Society. Its general objective is to promote and extend the use of statistical methods in all kind of theoretical and applied disciplines. The Austrian Journal of Statistics is indexed in many data bases, such as Scopus (by Elsevier), Web of Science - ESCI by Clarivate Analytics (formely Thompson & Reuters), DOAJ, Scimago, and many more. The current estimated impact factor (via Publish or Perish) is 0.775, see HERE, or even more indices HERE. Austrian Journal of Statistics ISNN number is 1026597X Original papers and review articles in English will be published in the Austrian Journal of Statistics if judged consistently with these general aims. All papers will be refereed. Special topics sections will appear from time to time. Each section will have as a theme a specialized area of statistical application, theory, or methodology. Technical notes or problems for considerations under Shorter Communications are also invited. A special section is reserved for book reviews.