利用神经风格迁移生成深层梦境图像

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES
Lafta R. Al-khazraji, A. Abbas, A. S. Jamil
{"title":"利用神经风格迁移生成深层梦境图像","authors":"Lafta R. Al-khazraji, A. Abbas, A. S. Jamil","doi":"10.14500/aro.11051","DOIUrl":null,"url":null,"abstract":"In recent years, deep dream and neural style transfer emerged as hot topics in deep learning. Hence, mixing those two techniques support the art and enhance the images that simulate hallucinations among psychiatric patients and drug addicts. In this study, our model combines deep dream and neural style transfer (NST) to produce a new image that combines the two technologies. VGG-19 and Inception v3 pre-trained networks are used for NST and deep dream, respectively. Gram matrix is a vital process for style transfer. The loss is minimized in style transfer while maximized in a deep dream using gradient descent for the first case and gradient ascent for the second. We found that different image produces different loss values depending on the degree of clarity of that images. Distorted images have higher loss values in NST and lower loss values with deep dreams. The opposite happened for the clear images that did not contain mixed lines, circles, colors, or other shapes.","PeriodicalId":8398,"journal":{"name":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Employing Neural Style Transfer for Generating Deep Dream Images\",\"authors\":\"Lafta R. Al-khazraji, A. Abbas, A. S. Jamil\",\"doi\":\"10.14500/aro.11051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, deep dream and neural style transfer emerged as hot topics in deep learning. Hence, mixing those two techniques support the art and enhance the images that simulate hallucinations among psychiatric patients and drug addicts. In this study, our model combines deep dream and neural style transfer (NST) to produce a new image that combines the two technologies. VGG-19 and Inception v3 pre-trained networks are used for NST and deep dream, respectively. Gram matrix is a vital process for style transfer. The loss is minimized in style transfer while maximized in a deep dream using gradient descent for the first case and gradient ascent for the second. We found that different image produces different loss values depending on the degree of clarity of that images. Distorted images have higher loss values in NST and lower loss values with deep dreams. The opposite happened for the clear images that did not contain mixed lines, circles, colors, or other shapes.\",\"PeriodicalId\":8398,\"journal\":{\"name\":\"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14500/aro.11051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14500/aro.11051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 3

摘要

近年来,深度梦和神经风格迁移成为深度学习领域的研究热点。因此,混合这两种技术支持了艺术,并增强了模拟精神病人和吸毒者幻觉的图像。在这项研究中,我们的模型结合了深度梦和神经风格迁移(NST),产生了一种结合了这两种技术的新图像。VGG-19和Inception v3预训练网络分别用于NST和深度梦。格矩阵是风格迁移的重要过程。在风格转移中,损失是最小的,而在深度梦中,损失是最大的,第一种情况使用梯度下降,第二种情况使用梯度上升。我们发现,不同的图像产生不同的损失值取决于该图像的清晰度。扭曲图像在NST中具有较高的损耗值,而在深度梦中具有较低的损耗值。对于不包含混合线条、圆圈、颜色或其他形状的清晰图像,情况正好相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Employing Neural Style Transfer for Generating Deep Dream Images
In recent years, deep dream and neural style transfer emerged as hot topics in deep learning. Hence, mixing those two techniques support the art and enhance the images that simulate hallucinations among psychiatric patients and drug addicts. In this study, our model combines deep dream and neural style transfer (NST) to produce a new image that combines the two technologies. VGG-19 and Inception v3 pre-trained networks are used for NST and deep dream, respectively. Gram matrix is a vital process for style transfer. The loss is minimized in style transfer while maximized in a deep dream using gradient descent for the first case and gradient ascent for the second. We found that different image produces different loss values depending on the degree of clarity of that images. Distorted images have higher loss values in NST and lower loss values with deep dreams. The opposite happened for the clear images that did not contain mixed lines, circles, colors, or other shapes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY
ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY MULTIDISCIPLINARY SCIENCES-
自引率
33.30%
发文量
33
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信