机器学习辅助下多载波NOMA网络直接和中继协同传输的资源分配

S. Romera Joan, T. Manimekalai, T. Laxmikandan
{"title":"机器学习辅助下多载波NOMA网络直接和中继协同传输的资源分配","authors":"S. Romera Joan, T. Manimekalai, T. Laxmikandan","doi":"10.1109/AISP53593.2022.9760683","DOIUrl":null,"url":null,"abstract":"In this paper we propose an Artificial Neural Network (ANN) based approach to reduce the computational complexity on solving the combinatorial optimization problem of resource allocation in a downlink multicarrier non-orthogonal multiple access (MC-NOMA) network aided by coordinated direct and relay transmission (CDRT) in the presence of underlay cognitive radio (CR) users. The combinatorial optimization involves optimal user pairing, relay selection, subcarrier pairing and assignment which, when solved by exhaustive search, incurs a high computational complexity and processing delay. We show that an ANN trained by stochastic gradient descent (SGD) based supervised learning algorithm can do the same with low complexity and can provide more than 50% reduction in processing delay.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"124 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning Aided Resource Allocation in a Downlink Multicarrier NOMA network with Coordinated Direct and Relay Transmission\",\"authors\":\"S. Romera Joan, T. Manimekalai, T. Laxmikandan\",\"doi\":\"10.1109/AISP53593.2022.9760683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose an Artificial Neural Network (ANN) based approach to reduce the computational complexity on solving the combinatorial optimization problem of resource allocation in a downlink multicarrier non-orthogonal multiple access (MC-NOMA) network aided by coordinated direct and relay transmission (CDRT) in the presence of underlay cognitive radio (CR) users. The combinatorial optimization involves optimal user pairing, relay selection, subcarrier pairing and assignment which, when solved by exhaustive search, incurs a high computational complexity and processing delay. We show that an ANN trained by stochastic gradient descent (SGD) based supervised learning algorithm can do the same with low complexity and can provide more than 50% reduction in processing delay.\",\"PeriodicalId\":6793,\"journal\":{\"name\":\"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)\",\"volume\":\"124 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AISP53593.2022.9760683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于人工神经网络(ANN)的方法,以降低在底层认知无线电(CR)用户存在的情况下,由协调直传和中继传输(CDRT)辅助的下行多载波非正交多址(MC-NOMA)网络中资源分配组合优化问题的计算复杂度。组合优化涉及到最优用户配对、中继选择、子载波配对和分配等问题,采用穷举搜索求解时,计算量大,处理延迟大。我们表明,基于随机梯度下降(SGD)的监督学习算法训练的人工神经网络可以以低复杂度完成相同的任务,并且可以将处理延迟减少50%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Aided Resource Allocation in a Downlink Multicarrier NOMA network with Coordinated Direct and Relay Transmission
In this paper we propose an Artificial Neural Network (ANN) based approach to reduce the computational complexity on solving the combinatorial optimization problem of resource allocation in a downlink multicarrier non-orthogonal multiple access (MC-NOMA) network aided by coordinated direct and relay transmission (CDRT) in the presence of underlay cognitive radio (CR) users. The combinatorial optimization involves optimal user pairing, relay selection, subcarrier pairing and assignment which, when solved by exhaustive search, incurs a high computational complexity and processing delay. We show that an ANN trained by stochastic gradient descent (SGD) based supervised learning algorithm can do the same with low complexity and can provide more than 50% reduction in processing delay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信