纤维增强DSP混合料的最小脆性设计

D. Lange-Kornbak , B.L. Karihaloo
{"title":"纤维增强DSP混合料的最小脆性设计","authors":"D. Lange-Kornbak ,&nbsp;B.L. Karihaloo","doi":"10.1016/S1065-7355(97)00057-6","DOIUrl":null,"url":null,"abstract":"<div><p>The limitations of the traditional material design approach in driving properties to extreme values and handling multiple design criteria and variables can be overcome by applying the optimization approach. Fiber-reinforced cement based composites based on strong aggregates and exhibiting approximately bilinear fiber pullout behavior are optimized in the present study for a given compressive strength <em>f</em><sup>′</sup><sub><em>c</em></sub> with a view to maximizing their uniaxial tensile strength <em>f</em><sup>′</sup><sub><em>t</em></sub> and fracture energy <em>G</em><sub><em>F</em></sub>. Relations for the bridging stresses prior to and during fiber pullout are established using fracture mechanics. The mix design leads to nonlinear, single, or multicriterion maximization problems for the objective functions <em>f</em><sup>′</sup><sub><em>t</em></sub> and <em>l</em><sub><em>ch</em></sub> = <em>EG</em><sub><em>F</em></sub>/<em>f</em><sup>′</sup><sub><em>t</em></sub><sup>2</sup> (characteristic length), subject to an equality constraint on <em>f</em><sup>′</sup><sub><em>c</em></sub>. In this way, optimal values for the microstructural parameters (fracture toughness of paste, length of fiber, and volume fractions and diameters of aggregate and fiber) are obtained.</p></div>","PeriodicalId":100028,"journal":{"name":"Advanced Cement Based Materials","volume":"7 3","pages":"Pages 89-101"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1065-7355(97)00057-6","citationCount":"22","resultStr":"{\"title\":\"Design of Fiber-Reinforced DSP Mixes for Minimum Brittleness\",\"authors\":\"D. Lange-Kornbak ,&nbsp;B.L. Karihaloo\",\"doi\":\"10.1016/S1065-7355(97)00057-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The limitations of the traditional material design approach in driving properties to extreme values and handling multiple design criteria and variables can be overcome by applying the optimization approach. Fiber-reinforced cement based composites based on strong aggregates and exhibiting approximately bilinear fiber pullout behavior are optimized in the present study for a given compressive strength <em>f</em><sup>′</sup><sub><em>c</em></sub> with a view to maximizing their uniaxial tensile strength <em>f</em><sup>′</sup><sub><em>t</em></sub> and fracture energy <em>G</em><sub><em>F</em></sub>. Relations for the bridging stresses prior to and during fiber pullout are established using fracture mechanics. The mix design leads to nonlinear, single, or multicriterion maximization problems for the objective functions <em>f</em><sup>′</sup><sub><em>t</em></sub> and <em>l</em><sub><em>ch</em></sub> = <em>EG</em><sub><em>F</em></sub>/<em>f</em><sup>′</sup><sub><em>t</em></sub><sup>2</sup> (characteristic length), subject to an equality constraint on <em>f</em><sup>′</sup><sub><em>c</em></sub>. In this way, optimal values for the microstructural parameters (fracture toughness of paste, length of fiber, and volume fractions and diameters of aggregate and fiber) are obtained.</p></div>\",\"PeriodicalId\":100028,\"journal\":{\"name\":\"Advanced Cement Based Materials\",\"volume\":\"7 3\",\"pages\":\"Pages 89-101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1065-7355(97)00057-6\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Cement Based Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1065735597000576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Cement Based Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1065735597000576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

应用优化方法可以克服传统材料设计方法在驱动性能极值和处理多个设计准则和变量方面的局限性。基于强骨料的纤维增强水泥基复合材料具有近似双线性的纤维拉拔特性,在给定的抗压强度f 'c下,本研究对其进行了优化,以期最大化其单轴抗拉强度f 't和断裂能GF。利用断裂力学建立了纤维拔出前和拔出过程中的桥接应力关系。混合设计导致目标函数f 't和lch = EGF/f 't2(特征长度)的非线性、单准则或多准则最大化问题,并受到f 'c的等式约束。通过这种方法,获得了微观结构参数(膏体断裂韧性、纤维长度、骨料和纤维的体积分数和直径)的最优值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Fiber-Reinforced DSP Mixes for Minimum Brittleness

The limitations of the traditional material design approach in driving properties to extreme values and handling multiple design criteria and variables can be overcome by applying the optimization approach. Fiber-reinforced cement based composites based on strong aggregates and exhibiting approximately bilinear fiber pullout behavior are optimized in the present study for a given compressive strength fc with a view to maximizing their uniaxial tensile strength ft and fracture energy GF. Relations for the bridging stresses prior to and during fiber pullout are established using fracture mechanics. The mix design leads to nonlinear, single, or multicriterion maximization problems for the objective functions ft and lch = EGF/ft2 (characteristic length), subject to an equality constraint on fc. In this way, optimal values for the microstructural parameters (fracture toughness of paste, length of fiber, and volume fractions and diameters of aggregate and fiber) are obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信