{"title":"过采样LoRa信号的低复杂度解调","authors":"V. Savaux","doi":"10.36227/techrxiv.16657063.v1","DOIUrl":null,"url":null,"abstract":"This paper deals with a method of demodulation for oversampled LoRa signal. The usual maximum likelihood (ML) based demodulation method for LoRa chirp spread spectrum (CSS) waveform is dedicated to signals sampled at Nyquist rate, whereas considering oversampled signals may improve the performance of the LoRa demodulation process. In this respect, when an oversampling rate (OSR) 2 is assumed, the method suggested in this paper consists in applying two demodulation processes to the even and odd samples of the oversampled LoRa signal, and then combining the results. This principle is then generalized to any OSR, and we show that the complexity of the method is low since it only involves discrete Fourier transforms (DFT). Moreover, a performance analysis in terms of symbol and bit error rate (SER and BER) is presented considering both additive white Gaussian noise (AWGN) and Rayleigh channel models. Simulations show the relevance of the method and the performance analysis as a gain of 3 dB is achieved by the demodulation at OSR 2 compared with OSR 1.","PeriodicalId":35022,"journal":{"name":"International Journal of Mobile Network Design and Innovation","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low-Complexity Demodulation for Oversampled LoRa Signal\",\"authors\":\"V. Savaux\",\"doi\":\"10.36227/techrxiv.16657063.v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with a method of demodulation for oversampled LoRa signal. The usual maximum likelihood (ML) based demodulation method for LoRa chirp spread spectrum (CSS) waveform is dedicated to signals sampled at Nyquist rate, whereas considering oversampled signals may improve the performance of the LoRa demodulation process. In this respect, when an oversampling rate (OSR) 2 is assumed, the method suggested in this paper consists in applying two demodulation processes to the even and odd samples of the oversampled LoRa signal, and then combining the results. This principle is then generalized to any OSR, and we show that the complexity of the method is low since it only involves discrete Fourier transforms (DFT). Moreover, a performance analysis in terms of symbol and bit error rate (SER and BER) is presented considering both additive white Gaussian noise (AWGN) and Rayleigh channel models. Simulations show the relevance of the method and the performance analysis as a gain of 3 dB is achieved by the demodulation at OSR 2 compared with OSR 1.\",\"PeriodicalId\":35022,\"journal\":{\"name\":\"International Journal of Mobile Network Design and Innovation\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mobile Network Design and Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36227/techrxiv.16657063.v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mobile Network Design and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36227/techrxiv.16657063.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
A Low-Complexity Demodulation for Oversampled LoRa Signal
This paper deals with a method of demodulation for oversampled LoRa signal. The usual maximum likelihood (ML) based demodulation method for LoRa chirp spread spectrum (CSS) waveform is dedicated to signals sampled at Nyquist rate, whereas considering oversampled signals may improve the performance of the LoRa demodulation process. In this respect, when an oversampling rate (OSR) 2 is assumed, the method suggested in this paper consists in applying two demodulation processes to the even and odd samples of the oversampled LoRa signal, and then combining the results. This principle is then generalized to any OSR, and we show that the complexity of the method is low since it only involves discrete Fourier transforms (DFT). Moreover, a performance analysis in terms of symbol and bit error rate (SER and BER) is presented considering both additive white Gaussian noise (AWGN) and Rayleigh channel models. Simulations show the relevance of the method and the performance analysis as a gain of 3 dB is achieved by the demodulation at OSR 2 compared with OSR 1.
期刊介绍:
The IJMNDI addresses the state-of-the-art in computerisation for the deployment and operation of current and future wireless networks. Following the trend in many other engineering disciplines, intelligent and automatic computer software has become the critical factor for obtaining high performance network solutions that meet the objectives of both the network subscriber and operator. Characteristically, high performance and innovative techniques are required to address computationally intensive radio engineering planning problems while providing optimised solutions and knowledge which will enhance the deployment and operation of expensive wireless resources.